Effective Biomass Valorization Procedures Using Ultrasound and Hydrodynamic Cavitation

  • Jean-Marc LévêqueEmail author
  • Giancarlo Cravotto
  • François Delattre
  • Pedro Cintas
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


The inherent chemical complexity of biomass renders it as a very attractive source to be recycled and converted into value-added chemicals representing perhaps the largest challenge facing the twenty-first century. To face this issue, over the last three decades, significant effort has been spent for the development of environmentally friendly protocols by means of non-conventional energy sources such as ultrasound (US) and hydrodynamic cavitation (HC) for biomass pretreatment and subsequent chemical transformations.


  1. Ahmad S, Pathak VV, Kothari R, Singh RP (2017) Prospects for pretreatment methods of lignocellulosic waste biomass for biogas enhancement: opportunities and challenges. Biofuels. Scholar
  2. Amidon TE, Wood CD, Shupe AM, Wang Y, Graves M, Liu SJ (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J. Biobased Mater Bioenergy 2(2):100–120CrossRefGoogle Scholar
  3. Borah AJ, Agarwal M, Poudyal M, Goyal A, Moholkar VS (2016) Mechanistic investigation in US induced enhancement of enzymatic hydrolysis of invasive biomass species. Bioresour Technol 213:342–349CrossRefGoogle Scholar
  4. Borah PP, Das P, Badwaik LS (2017) US treated potato peel and sweet lime pomace based biopolymer film development. Ultrason Sonochem 36:11–19CrossRefGoogle Scholar
  5. Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583CrossRefGoogle Scholar
  6. Brochette-Lemoine S, Trombotto S, Joannard D, Descotes G, Bouchu A, Queneau Y (2000) US in carbohydrate chemistry: sonophysical glucose oligomerisation and sonocatalysed sucrose oxidation. Ultrason Sonochem 7:157–161CrossRefGoogle Scholar
  7. Cintas P, Tagliapietra S, Caporaso M, Tabasso S, Cravotto G (2015) Enabling technologies built on a sonochemical platform: challenges and opportunities. Ultrason Sonochem 25:8–16CrossRefGoogle Scholar
  8. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502CrossRefGoogle Scholar
  9. Garcia A, Alriols MG, Llano-Ponte R, Labidi J (2011) US-assisted fractionation of the lignocellulosic material. Bioresour Technol 102:6326–6330CrossRefGoogle Scholar
  10. Gilca IA, Popa VI, Crestini C (2015) Obtaining lignin nanoparticles by sonication. Ultrason Sonochem 23:369–375CrossRefGoogle Scholar
  11. Gogate PR, Kabadi AM (2009) A review of applications of cavitation in biochemical engineering/biotechnology. Biochem Eng J 44:60–72CrossRefGoogle Scholar
  12. He Z, Wang Z, Zhao Z, Yi S, Mu J, Wang X (2017) Influence of US pretreatment on wood physiochemical structure. Ultrason Sonochem 34:136–141CrossRefGoogle Scholar
  13. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRefGoogle Scholar
  14. Hilares RT, César dos Santos JC, Ahmed MA, Jeon SH, Silvério da Silva S, Han J-I (2016) Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries. Bioresour Technol 214:609–614CrossRefGoogle Scholar
  15. Hilares RT, Faria de Almeida G, Ahmed MA, Antunes FAF, Silvério da Silva S, Han J-I, César dos Santos J (2017) Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: a parametric study. Bioresour Technol 235:301–308CrossRefGoogle Scholar
  16. Iskalieva A, Yimmou BM, Gogate PR, Horvath M, Horvath PG, Csoka L (2012) Cavitation assisted delignification of wheat straw: a review. Ultrason Sonochem 19:984–993CrossRefGoogle Scholar
  17. Ivetić DŽ, Omorjan RP, Đorđević TR, Antov MG (2017) The impact of US pretreatment on the enzymatic hydrolysis of cellulose from sugar beet shreds: modeling of the experimental results. Environ Prog Sustain 36(4):1164–1172CrossRefGoogle Scholar
  18. Kandasamy M, Hamawand I, Bowtell L, Seneweera S, Chakrabarty S, Yusaf T, Shakoor Z, Algayyim S, Eberhard F (2017) Investigation of ethanol production potential from lignocellulosic material without enzymatic hydrolysis using the US technique. Energies 10:62–74CrossRefGoogle Scholar
  19. Kim I, Lee I, Jeon SH, Hwang T, Han J-I (2015) Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed. Bioresour Technol 192:335–339CrossRefGoogle Scholar
  20. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7Google Scholar
  21. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  22. Lunelli FC, Sfalcin P, Souza M, Zimmermann E, Dal Prá V, Foletto EL, Jahn SL, Kuhn RC, Mazutti MA (2014) US-assisted enzymatic hydrolysis of sugarcane bagasse for the production of fermentable sugars. Biosyst Eng 124:24–28CrossRefGoogle Scholar
  23. Ma S, Yu SJ, Wang ZH, Zheng XL (2013) US-assisted modification of beet pulp cellulose with phthalic anhydride in ionic liquid cellulose. Chem Technol 47:527–533Google Scholar
  24. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201CrossRefGoogle Scholar
  25. Makkee M, Kieboom APG, van Bekkum H (1985) Hydrogenation of D-fructose and D-fructose/D-glucose mixtures. Carbohydr Res 138:225–236CrossRefGoogle Scholar
  26. Nakashima K, Ebi Y, Shibasaki-Kitakawa N, Soyama H, Yonemoto T (2016) Hydrodynamic cavitation reactor for efficient pretreatment of lignocellulosic biomass. Ind Eng Chem Res 55:1866–1871CrossRefGoogle Scholar
  27. Ninomiya K, Ohta A, Omote S, Ogino C, Takahashi K, Shimizu N (2013) Combined use of completely bio-derived cholinium ionic liquids and US irradiation for the pretreatment of lignocellulosic material to enhance enzymatic saccharification. Chem Eng J 215–216:811–818CrossRefGoogle Scholar
  28. Ninomiya K, Kohori A, Tatsumi M, Osawa K, Endo T, Kakuchi R, Ogino C, Shimizu N, Takahashi K (2015) Ionic liquid/US pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid. Bioresour Technol 176:169–174CrossRefGoogle Scholar
  29. O’Donnell CP, Tiwari BK, Bourkec P, Cullen PJ (2010) Effect of ultrasonic processing on food enzymes of industrial importance. Trends Food Sci Technol 21:358–367CrossRefGoogle Scholar
  30. Sindhu R, Binod P, Mathew AK, Abraham A, Gnansounou E, Ummalyma SB, Thomas L, Pandey A (2017) Development of a novel US-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post-harvest residue. Bioresour Technol 242:146–151CrossRefGoogle Scholar
  31. Singh S, Bharadwaja STP, Yadav PK, Moholkar VS, Goyal A (2014) Mechanistic investigation in US-assisted (alkaline) delignification of Parthenium hysterophorus. Biomass Ind Eng Chem Res 53:14241–14252CrossRefGoogle Scholar
  32. Subhedar PB, Gogate PR (2014a) Alkaline and US assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrason Sonochem 21:216–225CrossRefGoogle Scholar
  33. Subhedar PB, Gogate PR (2014b) Enhancing the activity of cellulase enzyme using ultrasonic irradiations. J Mol Catal B Enzym 101:108–114CrossRefGoogle Scholar
  34. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58CrossRefGoogle Scholar
  35. Tabasso S, Carnaroglio D, Calcio Gaudino E, Cravotto G (2015) Microwave, US and ball mill procedures for bio-waste valorization. Green Chem 17:684–693CrossRefGoogle Scholar
  36. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefGoogle Scholar
  37. Toukoniitty B, Kuusisto J, Mikkola J-P, Salmi T, Yu Murzin D (2005) Effect of US on catalytic hydrogenation of D-fructose to D-mannitol. Ind Eng Chem Res 44:9370–9375CrossRefGoogle Scholar
  38. Wu H, Dai X, Zhou S-L, Gan Y-Y, Xiong Z-Y, Qin Y-H, Ma J, Yang L, Wu Z-K, Wang T-L, Wang W-G, Wang C-W (2017) US-assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication. Bioresour Technol 241:70–74Google Scholar
  39. Xiong Z-Y, Qin Y-H, Ma J-Y, Yang L, Wu Z-K, Wang T-L, Wang W-G, Wang C-W (2017) Pretreatment of rice straw by US-assisted Fenton process. Bioresour Technol 227:408–411CrossRefGoogle Scholar
  40. Yang F, Li L, Li Q, Tan W, Liu W, Xian M (2010) Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification. Carbohyd Polym 81:311–316CrossRefGoogle Scholar
  41. Yuan T-Q, You T-T, Wang W, Xu F, Sun R-C (2013) Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 2: characterization of lignin and hemicelluloses. Bioresour Technol 136:345–350CrossRefGoogle Scholar
  42. Yunus R, Salleh SF, Abdullah N, Biak DRA (2010) Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101:9792–9796CrossRefGoogle Scholar
  43. Zhang P, Dong S-J, Ma H-H, Zhang B-X, Wang Y-F, Hu X-M (2015) Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Ind Crops Prod 76:688–696CrossRefGoogle Scholar
  44. Zhong H, Jia C, Wei P (2017) Enhanced saccharification of wheat straw with the application of ultrasonic-assisted quaternary ammonium hydroxide pretreatment. Process Biochem 53:180–187CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jean-Marc Lévêque
    • 1
    Email author
  • Giancarlo Cravotto
    • 2
  • François Delattre
    • 3
  • Pedro Cintas
    • 4
  1. 1.LCME/SCeMUniversité de Savoie Mont BlancParisFrance
  2. 2.Dipartimento di Scienza e Tecnologia del FarmacoUniversitá di TorinoTurinItaly
  3. 3.Departement de ChimieUnité de Chimie Environnementale et Interactions sur le VivantDunkerqueFrance
  4. 4.Departamento Química Orgánica e Inorgánica, Facultad de CienciasUniversity of ExtremaduraBadajozSpain

Personalised recommendations