Mitigation of Speckle Noise in Optical Coherence Tomograms

  • Saba Adabi
  • Anne Clayton
  • Silvia ConfortoEmail author
  • Ali Hojjat
  • Adrian G. Podoleanu
  • Mohammadreza Nasiriavanaki
Part of the Springer Series in Optical Sciences book series (SSOS, volume 218)


Optical Coherence Tomography (OCT) is a promising high-resolution imaging technique that works based on low coherent interferometry. However, like other low coherent imaging modalities, OCT suffers from an artifact called, speckle. Speckle reduces the detectability of diagnostically relevant features in the tissue. Retinal optical coherence tomograms are of a great importance in detecting and diagnosing eye diseases. Different hardware or software based techniques are devised in literatures to mitigate speckle noise. The ultimate aim of any software-based despeckling technique is to suppress the noise part of speckle while preserves the information carrying portion of that. In this chapter, we reviewed the most prominent speckle reduction methods for OCT images to date and then present a novel and intelligent speckle reduction algorithm to reduce speckle in OCT images of retina, based on an ensemble framework of Multi-Layer Perceptron (MLP) neural networks.


Optical coherence tomography Multi-Layer perceptron (MLP) Speckle noise reduction Artificial neural network (ANN) 


  1. 1.
    R.G. Cucu, A.G. Podoleanu, J.A. Rogers, J. Pedro, R.B. Rosen, Combined confocal/en face T-scan-based ultrahigh-resolution optical coherence tomography in vivo retinal imaging. Opt. Lett. 31, 1684–1686 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    E. Hecht, A. Zajac, Optics (1974)Google Scholar
  3. 3.
    A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography-principles and applications. Rep. Prog. Phys. 66, 239 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Schmitt, Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    A.G. Podoleanu, Optical coherence tomography. Br. J. Radiol. (2014)Google Scholar
  6. 6.
    M. Hughes, High lateral resolution imaging with dynamic focus. Ph.D. thesis, University of Kent (2010)Google Scholar
  7. 7.
    V.V. Tuchin, Coherent-Domain Optical Methods: Biomedical Diagnostics, Environment and Material Science (Springer Science & Business Media, 2004)Google Scholar
  8. 8.
    B.K. Alsberg, A.M. Woodward, M.K. Winson, J. Rowland, D.B. Kell, Wavelet denoising of infrared spectra. Analyst 122, 645–652 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    R. Leitgeb, C. Hitzenberger, A. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M.R. Avanaki, A. Hojjat, A.G. Podoleanu, Investigation of computer-based skin cancer detection using optical coherence tomography. J. Mod. Opt. 56, 1536–1544 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M.R. Avanaki, A. Hojjatoleslami, M. Sira, J.B. Schofield, C. Jones, A.G. Podoleanu, Investigation of basal cell carcinoma using dynamic focus optical coherence tomography. Appl. Opt. 52, 2116–2124 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    J. Welzel, Optical coherence tomography in dermatology: a review. Skin Res. Technol. 7, 1–9 (2001)CrossRefGoogle Scholar
  13. 13.
    L.L. Otis, M.J. Everett, U.S. Sathyam, B.W. Colston, optical coherence tomography: a new imaging: technology for dentistry. J. Am. Dent. Assoc. 131, 511–514 (2000)CrossRefGoogle Scholar
  14. 14.
    G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, J.G. Fujimoto, In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997)CrossRefGoogle Scholar
  15. 15.
    I.-K. Jang, B.E. Bouma, D.-H. Kang, S.-J. Park, S.-W. Park, K.-B. Seung, K.-B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J. Am. Coll. Cardiol. 39, 604–609 (2002)CrossRefGoogle Scholar
  16. 16.
    W. Drexler, J.G. Fujimoto, Optical coherence tomography in ophthalmology. J. Biomed. Opt. 12, 041201-041201-2 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    J.G. Fujimoto, C. Pitris, S.A. Boppart, M.E. Brezinski, Optical Coherence Tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2, 9–25 (2000)CrossRefGoogle Scholar
  18. 18.
    A.M. Zysk, F.T. Nguyen, A.L. Oldenburg, D.L. Marks, S.A. Boppart, Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12, 051403-051403-21 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    W. Drexler, J.G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008)Google Scholar
  20. 20.
    J.M. Schmitt, A. Knuttel, M. Yadlowsky, M. Eckhaus, Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys. Med. Biol. 39, 1705 (1994)CrossRefGoogle Scholar
  21. 21.
    L. Thrane, M.H. Frosz, T.M. Jørgensen, A. Tycho, H.T. Yura, P.E. Andersen, Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures. Opt. Lett. 29, 1641–1643 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Schmitt, S. Xiang, K.M. Yung, Speckle in optical coherence tomography. J. Biomed. Opt. 4, 95–105 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    M.R. Avanaki, A.G. Podoleanu, J.B. Schofield, C. Jones, M. Sira, Y. Liu, A. Hojjat, Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens-Fresnel theorem. Appl. Opt. 52, 1574–1580 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    A. Hojjatoleslami, M.R. Avanaki, OCT skin image enhancement through attenuation compensation. Appl. Opt. 51, 4927–4935 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    J.W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007)Google Scholar
  26. 26.
    M.-R. Nasiri-avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, A. Podoleanu, Optical coherence tomography system optimization using simulated annealing algorithm, in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009) (2009), pp. 669–674Google Scholar
  27. 27.
    R.F. Wagner, S.W. Smith, J.M. Sandrik, H. Lopez, Statistics of speckle in ultrasound B-scans. IEEE Trans. Sonics Ultrason. 30, 156–163 (1983)CrossRefGoogle Scholar
  28. 28.
    S. Hojjatoleslami, M. Avanaki, A.G. Podoleanu, Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm. Appl. Opt. 52, 5663–5670 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    D.C. Adler, T.H. Ko, J.G. Fujimoto, Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt. Lett. 29, 2878–2880 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113, 325–332 (1995)CrossRefGoogle Scholar
  31. 31.
    N. Iftimia, B.E. Bouma, G.J. Tearney, Speckle reduction in optical coherence tomography by “path length encoded” angular compounding. J. Biomed. Opt. 8, 260–263 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    T.M. Jørgensen, L. Thrane, M. Mogensen, F. Pedersen, P.E. Andersen, Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method, in European Conference on Biomedical Optics (Optical Society of America, 2007), 6627_22Google Scholar
  33. 33.
    P.A. Magnin, O.T. Von Ramm, F.L. Thurstone, Frequency compounding for speckle contrast reduction in phased array images. Ultrason. Imaging 4, 267–281 (1982)CrossRefGoogle Scholar
  34. 34.
    H.L. Resnikoff, O. Raymond Jr., Wavelet Analysis: The Scalable Structure of Information (Springer Science & Business Media, 2012)Google Scholar
  35. 35.
    D.J. Smithies, T. Lindmo, Z. Chen, J.S. Nelson, T.E. Milner, Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation. Phys. Med. Biol. 43, 3025 (1998)CrossRefGoogle Scholar
  36. 36.
    R.K. Wang, Reduction of speckle noise for optical coherence tomography by the use of nonlinear anisotropic diffusion, in Biomedical Optics 2005 (International Society for Optics and Photonics, 2005), pp. 380–385Google Scholar
  37. 37.
    P.M. Shankar, Speckle reduction in ultrasound B-scans using weighted averaging in spatial compounding. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 754–758 (1986)CrossRefGoogle Scholar
  38. 38.
    J.W. Goodman, Some fundamental properties of speckle*. J. Opt. Soc. Am. A 66, 1145–1150 (1976)ADSCrossRefGoogle Scholar
  39. 39.
    M. Pircher, E. Go, R. Leitgeb, A.F. Fercher, C.K. Hitzenberger, Speckle reduction in optical coherence tomography by frequency compounding. J. Biomed. Opt. 8, 565–569 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    M.R. Avanaki, R. Cernat, P.J. Tadrous, T. Tatla, A.G. Podoleanu, S.A. HojjatoleslamI, Spatial compounding algorithm for speckle reduction of dynamic focus OCT images. IEEE Photonics Technol. Lett. 25, 1439–1442 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    A. Ozcan, A. Bilenca, A.E. DesjardinS, B.E. Bouma, G.J. Tearney, Speckle reduction in optical coherence tomography images using digital filtering. J. Opt. Soc. Am. A 24, 1901–1910 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    J. Rogowska, M.E. Brezinski, Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging. IEEE Trans. Med. Imaging 19, 1261–1266 (2000)CrossRefGoogle Scholar
  43. 43.
    P. Puvanathasan, K. Bizheva, Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set. Opt. Express 15, 15747–15758 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    B. Sander, M. Larsen, L. Thrane, J. Hougaard, T. Jørgensen, Enhanced optical coherence tomography imaging by multiple scan averaging. Br. J. Ophthalmol. 89, 207–212 (2005)CrossRefGoogle Scholar
  45. 45.
    G. Karasakal, I. Erer, Speckle noise reduction in SAR imaging using lattice filters based subband decomposition, in IEEE International Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007 (IEEE, 2007), pp. 1476–1480Google Scholar
  46. 46.
    J. Kim, D.T. Miller, E. Kim, S. Oh, J. Oh, T.E. Milner, Optical coherence tomography speckle reduction by a partially spatially coherent source. J. Biomed. Opt. 10, 064034-064034-9 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    M. Avanaki, P. Laissue, A.G. Podoleanu, A. Aber, S. Hojjatoleslami, Evaluation of wavelet mother functions for speckle noise suppression in OCT images. Int. J. Graph. Bioinf. Med. Eng. 11, 1–5 (2011)Google Scholar
  48. 48.
    M. Avanaki, P.P. Laissue, T.J. Eom, A.G. Podoleanu, A. Hojjatoleslami, Speckle reduction using an artificial neural network algorithm. Appl. Opt. 52, 5050–5057 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    M.R. Avanaki, P.P. Laissue, A.G. Podoleanu, A. Hojjat, Denoising based on noise parameter estimation in speckled OCT images using neural network, in 1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics (International Society for Optics and Photonics, 2008), 71390E-71390E-9Google Scholar
  50. 50.
    M.R. Avanaki, M.J. Marques, A. Bradu, A. Hojjatoleslami, A.G. Podoleanu, A new algorithm for speckle reduction of optical coherence tomography images, in SPIE BiOS (International Society for Optics and Photonics, 2014), 893437-893437-9Google Scholar
  51. 51.
    J.-N. Hwang, S.-R. LAY, A. Lippman, Nonparametric multivariate density estimation: a comparative study. IEEE Trans. Signal Process. 42, 2795–2810 (1994)ADSCrossRefGoogle Scholar
  52. 52.
    H. Park, R. Miyazaki, T. Nishimura, Y. Tamaki, The speckle noise reduction and the boundary enhancement on medical ultrasound images using the cellular neural networks. Open image in new window. C, 127, 1726–1731 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    S. Adabi, S. Conforto, A. Clayton, A.G. Podoleanu, A. Hojjat, M. Avanaki, An intelligent speckle reduction algorithm for optical coherence tomography images, in Proceeding of the 4th International Conference on Photonics, Optics and Laser Technology, PHOTOPTICS 2016 (SciTePress, 2016), pp. 40–45Google Scholar
  54. 54.
    M. Bashkansky, J. Reintjes, Statistics and reduction of speckle in optical coherence tomography. Opt. Lett. 25, 545–547 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators. IEEE Trans. Neural Netw. 2, 359–366 (1989)CrossRefGoogle Scholar
  56. 56.
    M. Minsky, S. Papert, Perceptrons (1969)Google Scholar
  57. 57.
    T.B. Fitzpatrick, Soleil et peau. J Med. Esthet 2, 33–34 (1975)Google Scholar
  58. 58.
    M.R. Avanaki, A.G. Podoleanu, M.C. Price, S.A. Corr, S. Hojjatoleslami, Two applications of solid phantoms in performance assessment of optical coherence tomography systems. Appl. Opt. 52, 7054–7061 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    D. Harwood, M. Subbarao, H. Hakalahti, L.S. Davis, A new class of edge-preserving smoothing filters. Pattern Recogn. Lett. 6, 155–162 (1987)CrossRefGoogle Scholar
  60. 60.
    M. Kuwahara, K. Hachimura, S. Eiho, M. Kinoshita, Processing of RI-angiocardiographic images, in Digital Processing of Biomedical Images (Springer, 1976)Google Scholar
  61. 61.
    M. Nasiriavanaki, J. Xia, H. Wan, A.Q. Bauer, J.P. Culver, L.V. Wang, High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc. Natl. Acad. Sci. 111, 21–26 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Saba Adabi
    • 1
    • 2
  • Anne Clayton
    • 1
  • Silvia Conforto
    • 2
    Email author
  • Ali Hojjat
    • 3
  • Adrian G. Podoleanu
    • 4
  • Mohammadreza Nasiriavanaki
    • 1
  1. 1.Department of Biomedical EngineeringWayne State UniversityDetroitUSA
  2. 2.Department of Applied ElectronicsRoma Tre UniversityRomeItaly
  3. 3.School of Physical SciencesUniversity of KentCanterburyUK
  4. 4.Applied Optics GroupUniversity of KentCanterburyUK

Personalised recommendations