Advertisement

Photonic, Plasmonic, Fluidic, and Luminescent Devices Based on New Polyfunctional Photo-Thermo-Refractive Glass

  • N. Nikonorov
  • V. Aseev
  • V. Dubrovin
  • A. Ignatiev
  • S. Ivanov
  • Y. Sgibnev
  • A. Sidorov
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 218)

Abstract

Fluoride Photo-Thermo-Refractive (PTR) glasses are very promising materials for recording Bragg gratings for different laser applications. Design and fabrication of novel chloride and bromide PTR glasses will be discussed. It was shown that various technologies as photo-thermo-induced crystallization, holograms recording, laser treatment, ion exchange, and chemical etching can be used for the cases of the fluoride, chloride and bromide PTR glasses, the so called polyfunctional. It is shown that polyfunctional PTR glasses can be used for the creation of novel optical elements and devices like holographic volume Bragg gratings, optical, luminescent and plasmonic waveguides, hollow structures, thermo-and biosensors, phosphors for LEDs, down-converters for solar cells have been designed and fabricated based on these new polyfunctional PTR glass.

Keywords

Photo-thermo-refractive glass Ion-exchangeable glass Photoetchable glass Bragg grating Waveguide Phosphors Down-converter Thermo-sensor Biosensor 

Notes

Acknowledgements

This work was supported by the Ministry of Education and Science of Russian Federation (Project 16.1651.2017/4.6).

References

  1. 1.
    A.L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, L.B. Glebov, Volume Bragg gratings as ultra-narrow and multiband optical filters, in Proceedings of SPIE, vol. 8428 (2012), p. 84280C–84280C–11Google Scholar
  2. 2.
    S.A. Ivanov, A.E. Angervaks, A.S. Shcheulin, Application of photo-thermo-refractive glass as a holographic medium for holographic collimator gun sights, in Proceedings of SPIE, vol. 9131 (2014), p. 91311BGoogle Scholar
  3. 3.
    L.B. Glebov, Photosensitive holographic glass—new approach to creation of high power lasers. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. Part B 48(3), 123–128 (2007)Google Scholar
  4. 4.
    L.B. Glebov, V.I. Smirnov, C.M. Stickley, I.V. Ciapurin, New approach to robust optics for HEL systems. Proc. SPIE 4724, 101–109 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    N.V. Nikonorov, E.I. Panysheva, I.V. Tunimanova, A.V. Chukharev, Influence of glass composition on the refractive index change upon photothermoinduced crystallization. Glass Phys. Chem. 27(3), 241–249 (2001)CrossRefGoogle Scholar
  6. 6.
    L. Glebova, J. Lumeau, M. Klimov, E.D. Zanotto, L.B. Glebov, Role of bromine on the thermal and optical properties of photo-thermo-refractive glass. J. Non-Cryst. Solids 354(2–9), 456–461 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S.D. Stookey, G.H. Beall, J.E. Pierson, Full-color photosensitive glass. J. Appl. Phys. 49(10), 5114–5123 (1978)ADSCrossRefGoogle Scholar
  8. 8.
    Y.M. Sgibnev, N.V. Nikonorov, A.I. Ignatiev, Luminescence of silver clusters in ion-exchanged cerium-doped photo-thermo-refractive glasses. J. Lumin. 176, 292–297 (2016)CrossRefGoogle Scholar
  9. 9.
    V.D. Dubrovin, A.I. Ignatiev, N.V. Nikonorov, A.I. Sidorov, T.A. Shakhverdov, D.S. Agafonova, Luminescence of silver molecular clusters in photo-thermo-refractive glasses. Opt. Mater. 36(4), 753–759 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    L.B. Glebov, N.V. Nikonorov, E.I. Panysheva, G.T. Petrovskii, V.V. Savvin, I.V. Tunimanova, V.A. Tsekhomskii, New ways to use photosensitive glasses for recording volume phase holograms. Opt. Spectrosc. 73(2), 237–241 (1992)ADSGoogle Scholar
  11. 11.
    I. Dyamant, A.S. Abyzov, V.M. Fokin, E.D. Zanotto, J. Lumeau, L.N. Glebova, L.B. Glebov, Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass. J. Non-Cryst. Solids 378, 115–120 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    N. Nikolay, I. Sergey, D. Victor, I. Alexander, New photo-thermo-refractive glasses for holographic optical elements: properties and applications, in Holographic Materials and Optical Systems, ed. by I. Naydenova (InTech, 2017)Google Scholar
  13. 13.
    I.M. Reviews, A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass, Dec 2016Google Scholar
  14. 14.
    T. Cardinal, O.M. Efimov, H.G. Francois-Saint-Cyr, L.B. Glebov, L.N. Glebova, V.I. Smirnov, Comparative study of photo-induced variations of X-ray diffraction and refractive index in photo-thermo-refractive glass. J. Non-Cryst. Solids 325(1–3), 275–281 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    J.J. Mock, D.R. Smith, S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 485–491 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    N.V. Nikonorov, A.I. Sidorov, V.A. Tsekhomskiĭ, K.E. Lazareva, Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass. Opt. Spectrosc. 107(5), 705–707 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Lumeau, L. Glebova, V. Golubkov, E.D. Zanotto, L.B. Glebov, Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass. Opt. Mater. 32(1), 139–146 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    V.D. Dubrovin, A.I. Ignatiev, N.V. Nikonorov, Chloride photo-thermo-refractive glasses. Opt. Mater. Express 6(5), 1701 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    N. Nikonorov, V. Aseev, A. Ignatiev, A. Zlatov, New polyfunctional photo-thermo-refractive glasses for photonics applications, in Technical Digest of 7th International Conference on Optics-photonics Design & Fabrication (2010), pp. 209–210Google Scholar
  20. 20.
    A.M. Efimov, A.I. Ignatiev, N.V. Nikonorov, E.S. Postnikov, Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. I. Intrinsic, bromine-related, and impurity-related UV absorption in photo-thermo-refractive glass matrices. J. Non-Cryst. Solids 357(19–20), 3500–3512 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    L. Glebova, J. Lumeau, L.B. Glebov, Photo-thermo-refractive glass co-doped with Nd3+ as a new laser medium. Opt. Mater. 33(12), 1970–1974 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    V.A. Aseev, N.V. Nikonorov, Spectroluminescence properties of photothermo-refractive nanoglass-ceramics doped with ytterbium and erbium ions. J. Opt. Technol. 75(10), 676–681 (2008)CrossRefGoogle Scholar
  23. 23.
    P. Hofmann, R. Amezcua-correa, E. Antonio-lopez, D. Ott, M. Segall, I. Divliansky, J. Lumeau, L. Glebova, L. Glebov, N. Peyghambarian, A. Schülzgen, Strong Bragg gratings in highly photosensitive photo-thermo-refractive-glass optical fiber. IEEE Photonics Technol. Lett. 25(1), 25–28 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    P. Crump, G. Erbert, H. Wenzel, C. Frevert, C.M. Schultz, K.-H. Hasler, R. Staske, B. Sumpf, A. Maaßdorf, F. Bugge, S. Knigge, G. Trankle, Efficient high-power laser diodes. IEEE J. Sel. Top. Quantum Electron. 19(4) (2013)ADSCrossRefGoogle Scholar
  25. 25.
    I.S. Tarasov, High-power semiconductor separate-confinement double heterostructure lasers. Quantum Electron. 40(8), 661–681 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    N.A. Pikhtin, S.O. Slipchenko, Z.N. Sokolova, A.L. Stankevich, D.A. Vinokurov, I.S. Tarasov, Z.I. Alferov, 16 W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure. Electron. Lett. 40(22), 1413–1414 (2004)CrossRefGoogle Scholar
  27. 27.
    G.B. Venus, A. Sevian, V.I. Smirnov, L.B. Glebov, High-brightness narrow-line laser diode source with volume Bragg-grating feedback. Proc. SPIE 5711, 166–176 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    S.A. Ivanov, N.V. Nikonorov, A.I. Ignat’ev, V.V. Zolotarev, Y.V. Lubyanskiy, N.A. Pikhtin, I.S. Tarasov, Narrowing of the emission spectra of high-power laser diodes with a volume Bragg grating recorded in photo-thermo-refractive glass. J. Semicond. 50(6), 819–823 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Y.M. Sgibnev, N.V. Nikonorov, V.N. Vasilev, A.I. Ignatiev, Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method. J. Lightwave Technol. 33(17), 3730–3735 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    J. Upatnieks, A.M. Tai, Development of the holographic sight, vol. 2968, pp. 272–281Google Scholar
  31. 31.
    D.J. DeBitetto, White-light viewing of surface holograms by simple dispersion compensation. Appl. Phys. Lett. 9(12), 417–418 (1966)ADSCrossRefGoogle Scholar
  32. 32.
    H. Kogelnik, C.V. Shank, Stimulated emission in a periodic structure. Appl. Phys. Lett. 18(4), 152–154 (1971)ADSCrossRefGoogle Scholar
  33. 33.
    M. Nakamura, H.W. Yen, A. Yariv, E. Garmire, S. Somekh, H.L. Garvin, Laser oscillation in epitaxial GaAs waveguides with corrugation feedback. Appl. Phys. Lett. 23(5), 224–225 (1973)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Sato, T. Taira, V. Smirnov, L. Glebova, L. Glebov, Continuous-wave diode-pumped laser action of Nd3+-doped photo-thermo-refractive glass. Opt. Lett. 36(12), 2257–2259 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    S.A. Ivanov, V.F. Lebedev, A.I. Ignat’ev, N.V. Nikonorov, Laser action on neodymium heavily doped photo-thermo-refractive glass (2016), pp. 29–31Google Scholar
  36. 36.
    A. Ryasnyanskiy, N. Vorobiev, V. Smirnov, J. Lumeau, L. Glebova, O. Mokhun, C. Spiegelberg, M. Krainak, A. Glebov, L. Glebov, DBR and DFB lasers in neodymium- and ytterbium-doped photothermorefractive glasses. Opt. Lett. 39(7), 2156–2159 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    M.E. Nordberg, E.L. Mochel, H.M. Garfinkel, J.S. Olcott, Strengthening by ion exchange. J. Am. Ceram. Soc. 47(5), 215–219 (1964)CrossRefGoogle Scholar
  38. 38.
    S.S. Kistler, Stresses in glass produced by nonuniform exchange of monovalent ions. J. Am. Ceram. Soc. 45(2), 59–68 (1962)CrossRefGoogle Scholar
  39. 39.
    T. Izawa, H. Nakagome, Optical waveguide formed by electrically induced migration of ions in glass plates. Appl. Phys. Lett. 21(12), 584–586 (1972)ADSCrossRefGoogle Scholar
  40. 40.
    A.N. Miliou, R. Srivastava, R.V. Ramaswamy, Modeling of the index change in K(+)-Na(+) ion-exchanged glass. Appl. Opt. 30(6), 674–681 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    R.V. Ramaswamy, R. Srivastava, Ion-exchanged glass waveguides: a review. J. Lightwave Technol. 6(6), 984–1000 (1988)ADSCrossRefGoogle Scholar
  42. 42.
    J. Albert, G. Yip, Stress-induced index change for K+-Na+ ion exchange in glass. Electron. Lett. 23(14), 737–738 (1987)CrossRefGoogle Scholar
  43. 43.
    W.G. French, A.D. Pearson, Refractive index changes produced in glass by ion exchange. Am. Ceram. Soc. Bull. 49(11) (1970)Google Scholar
  44. 44.
    N.V. Nikonorov, Influence of ion-exchange treatment on the physicochemical properties of glass and waveguide surfaces. Glass Phys. Chem. 25(3), 207–232 (1999)Google Scholar
  45. 45.
    A.K. Varshneya, Chemical strengthening of glass: lessons learned and yet to be learned. Int. J. Appl. Glass Sci. 1(2), 131–142 (2010)CrossRefGoogle Scholar
  46. 46.
    A.K. Varshneya, The physics of chemical strengthening of glass: room for a new view. J. Non-Cryst. Solids 356(44–49), 2289–2294 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    S. Karlsson, B. Jonson, C. Stålhandske, The technology of chemical glass strengthening—a review. Glass Technol.: Eur. J. Glass Sci. Technol. Part A, 51(2), 41–54, 2010Google Scholar
  48. 48.
    E.M. Sgibnev, A.I. Ignatiev, N.V. Nikonorov, A.M. Efimov, E.S. Postnikov, Effects of silver ion exchange and subsequent treatments on the UV-VIS spectra of silicate glasses. I. Undoped, CeO2-doped, and (CeO2 + Sb2O3)-codoped photo-thermo-refractive matrix glasses. J. Non-Cryst. Solids 378, 213–226 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    A.M. Efimov, A.I. Ignatiev, N.V. Nikonorov, E.S. Postnikov, Photo-thermo-refractive glasses: effects of dopants on their ultraviolet absorption spectra. Int. J. Appl. Glass Sci. 6(2), 109–127 (2015)CrossRefGoogle Scholar
  50. 50.
    J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRefGoogle Scholar
  51. 51.
    K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58(1), 267–297 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    T. Findakly, Glass waveguides by ion exchange: a review. Opt. Eng. 25(2), 244–250 (1985)ADSGoogle Scholar
  53. 53.
    N.V. Nikonorov, G.T. Petrovskii, Ion-exchanged glasses in integrated optics: the current state of research and prospects (a review). Glass Phys. Chem. 25(1), 16–55 (1999)Google Scholar
  54. 54.
    Y. Sgibnev, N. Nikonorov, A. Ignatiev, V. Vasilyev, M. Sorokina, Photostructurable photo-thermo-refractive glass. Opt. Express 24(5), 4563 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    M. Kösters, H.-T. Hsieh, D. Psaltis, K. Buse, Holography in commercially available photoetchable glasses. Appl. Opt. 44(17), 3399–3402 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    A. Razzaghi, M. Maleki, Y. Azizian-Kalandaragh, The influence of post-annealing treatment on the wettability of Ag+/Na+ ion-exchanged soda-lime glasses. Appl. Surf. Sci. 270, 604–610 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    V.D. Dubrovin, A.I. Ignat’ev, N.V. Nikonorov, A.I. Sidorov, Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses. Tech. Phys. 59(5), 733–735 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    K. Bourhis, A. Royon, G. Papon, M. Bellec, Y. Petit, L. Canioni, M. Dussauze, V. Rodriguez, L. Binet, D. Caurant, M. Treguer, J.J. Videau, T. Cardinal, Formation and thermo-assisted stabilization of luminescent silver clusters in photosensitive glasses. Mater. Res. Bull. 48(4), 1637–1644 (2013)CrossRefGoogle Scholar
  59. 59.
    A.S. Kuznetsov, V.K. Tikhomirov, V.V. Moshchalkov, UV-driven efficient white light generation by Ag nanoclusters dispersed in glass host. Mater. Lett. 92, 4–6 (2013)CrossRefGoogle Scholar
  60. 60.
    A.I. Ignat’ev, N.V Nikonorov, A.I. Sidorov, T.A. Shakhverdov, Influence of UV irradiation and heat treatment on the luminescence of molecular silver clusters in photo-thermo-refractive glasses. Opt. Spectrosc. 114(5), 769–774 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    Y.M. Sgibnev, N.V. Nikonorov, A.I. Ignatiev, High efficient luminescence of silver clusters in ion-exchanged antimony-doped photo-thermo-refractive glasses: influence of antimony content and heat treatment parameters. J. Lumin. 188, 172–179 (2017)ADSCrossRefGoogle Scholar
  62. 62.
    D.S. Agafonova, E.V. Kolobkova, I.A. Ignatiev, N.V. Nikonorov, T.A. Shakhverdov, P.S. Shirshnev, A.I. Sidorov, V.N. Vasiliev, Luminescent glass fiber sensors for ultraviolet radiation detection by the spectral conversion. Opt. Eng. 54(11), 117107 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    D. Klyukin, V. Dubrovin, A. Pshenova, S. Putilin, T. Shakhverdov, A. Tsypkin, N. Nikonorov, A. Sidorov, Formation of luminescent and non-luminescent silver nanoparticles in silicate glasses by NIR femtosecond laser pulses and subsequent thermal treatment: the role of halogenides. Opt. Eng. 55(6), in print (2016)ADSCrossRefGoogle Scholar
  64. 64.
    A.I. Ignatiev, D.A. Klyukin, V.S. Leontieva, N.V. Nikonorov, T.A. Shakhverdov, A.I. Sidorov, Formation of luminescent centers in photo-thermo-refractive silicate glasses under the action of UV laser nanosecond pulses. Opt. Mater. Express 5(7), 1635 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    D.A. Klyukin, A.I. Sidorov, A.I. Ignatiev, N.V. Nikonorov, Luminescence quenching and recovering in photo-thermo-refractive silver-ion doped glasses. Opt. Mater. 38, 233–237 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    V. Aseev, A. Abdrshin, E. Kolobkova, R. Nuryev, K. Moskaleva, N. Nikonorov, Thermal sensors based on ytterbium-erbium doped nano-glassceramics, in Proceedings—10th International Conference on Laser and Fiber-Optical Networks Modeling, LFNM 2010 (2010), pp. 45–46Google Scholar
  67. 67.
    V.I. Egorov, A.I. Sidorov, A.V. Nashchekin, P.A. Obraztsov, P.N. Brunkov, Investigation of the morphological features of silver nanoparticles in the near-surface layers of glass when they are synthesized by heat treatment in water vapor. J. Opt. Technol. 80(3), 174–178 (2013)CrossRefGoogle Scholar
  68. 68.
    P.A. Obraztsov, A.V. Nashchekin, N.V. Nikonorov, A.I. Sidorov, A.V. Panfilova, P.N. Brunkov, Formation of silver nanoparticles on the silicate glass surface after ion exchange. Phys. Solid State 55(6), 1272–1278 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    V.I. Egorov, A.V. Nashchekin, A.I. Sidorov, Formation of an ensemble of silver nanoparticles in the process of surface evaporation of glass optical waveguides doped with silver ions by the radiation of a pulsed CO2 laser. Quantum Electron. 45(9), 858–862 (2015)ADSCrossRefGoogle Scholar
  70. 70.
    V.I. Egorov, A.I. Sidorov, Modelling of sensitivity of plasmon sensory elements based on silver nanoparticles obtained by laser evaporation and ablation. Opt. Spectrosc. 121(1), 90–94 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • N. Nikonorov
    • 1
  • V. Aseev
    • 1
  • V. Dubrovin
    • 1
  • A. Ignatiev
    • 1
  • S. Ivanov
    • 1
  • Y. Sgibnev
    • 1
  • A. Sidorov
    • 1
  1. 1.Department of Optical Information Technologies and MaterialsITMO UniversitySaint PetersburgRussia

Personalised recommendations