Advertisement

Characterization of Micro-lenslet Array Using Digital Holographic Interferometric Microscope

  • Varun Kumar
  • Chandra Shakher
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 218)

Abstract

When laser light is transmitted through a transparent micro-lenslet array, a phase shift is induced in the transmitted wavefront, depending on the height variation and refractive index of the micro-lenslet array. In this paper, digital holographic interferometric microscope (DHIM) with Fresnel reconstruction method is demonstrated for the characterization of micro-lenslet array. Measurement of diameter (D), sag height (h), radius of curvature (ROC), focal length (f) and shape of micro-lenses are presented in the paper. The height profile of micro-lenses measured by DHIM is compared with commercially available Coherence Correlation Interferometer (CCI) from Taylor Hobson Ltd. UK with axial resolution 0.1 Å. The root mean square error (RSME) between the measurement carried out by DHIM and CCI is 0.12%. The advantage of using the DHIM is that the distortions in the wavefronts due to aberrations in the optical system can be avoided by the interferometric comparison of reconstructed phase with and without the micro-lenslet array.

Notes

Acknowledgements

The financial assistance received from the Defence Research and Development Organization (DRDO), Ministry of Defence, Government of India, under the project entitled ‘Testing of micro optics using digital holographic interferometry’ under FA sanction No. ERIP/ER/1300466/M/01/1556 dated 20 Nov. 2014 is highly acknowledged.

References

  1. 1.
    S. Sinzinger, J. Jahns, Microoptics. Wiley (1999)Google Scholar
  2. 2.
    R.H. Anderson, Close-up imaging of documents and displays with lens arrays. Appl. Opt. 18(4), 477–484 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    F.B. McCormick, F.A.P. Tooley, T.J. Cloonan, J.M. Sasian, H.S. Hinton, K.O. Mersereau, A.Y. Feldblum, Optical interconnections using microlens arrays. Opt. Quantum Electron. 24(4), S465–S477 (1992)CrossRefGoogle Scholar
  4. 4.
    T. Hou, C. Zheng, S. Bai, Q. Ma, D. Bridges, A. Hu, W.W. Duley, Fabrication, characterization, and applications of microlenses. Appl. Opt. 54(24), 7366–7376 (2015)ADSCrossRefGoogle Scholar
  5. 5.
  6. 6.
    M. Stedman, K. Lindsey, Limits of surface measurement by stylus instruments, in 1988 International Congress on Optical Science and Engineering (International Society for Optics and Photonics, 1989), pp. 56–61Google Scholar
  7. 7.
    K.W. Lee, Y.J. Noh, Y. Arai, Y. Shimizu, W. Gao, Precision measurement of micro-lens profile by using a force-controlled diamond cutting tool on an ultra-precision lathe. Int. J. Precis. Technol. 2(2–3), 211–225 (2011)CrossRefGoogle Scholar
  8. 8.
    D.H. Lee, N.G. Cho, Assessment of surface profile data acquired by a stylus profilometer. Meas. Sci. Technol. 23(10), 105601 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    B. Xu, Z. Jia, X. Li, Y.L. Chen, Y. Shimizu, S. Ito, W. Gao, Surface form metrology of micro-optics, in International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013) (International Society for Optics and Photonics, 2013), pp. 876902–876902Google Scholar
  10. 10.
    J. Aoki, W. Gao, S. Kiyono, T. Ono, A high precision AFM for nanometrology of large area micro-structured surfaces, in Key Engineering Materials, vol. 295. (Trans Tech Publications, 2005), pp. 65–70Google Scholar
  11. 11.
    A. Yacoot, L. Koenders, Recent developments in dimensional nanometrology using AFMs. Meas. Sci. Technol. 22(12), 122001 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    W. Gao, S. Goto, K. Hosobuchi, S. Ito, Y. Shimizu, A noncontact scanning electrostatic force microscope for surface profile measurement. CIRP Ann. Manuf. Technol. 61(1), 471–474 (2012)CrossRefGoogle Scholar
  13. 13.
    H.J. Jordan, M. Wegner, H. Tiziani, Highly accurate non-contact characterization of engineering surfaces using confocal microscopy. Meas. Sci. Technol. 9(7), 1142 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    H.J. Tiziani, T. Haist, S. Reuter, Optical inspection and characterization of microoptics using confocal microscopy. Opt. Lasers Eng. 36(5), 403–415 (2001)CrossRefGoogle Scholar
  15. 15.
    J. Schwider, O.R. Falkenstoerfer, Twyman-Green interferometer for testing microspheres. Opt. Eng. 34(10), 2972–2975 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    S. Reichelt, H. Zappe, Combined Twyman–Green and Mach–Zehnder interferometer for microlens testing. Appl. Opt. 44(27), 5786–5792 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    K.J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, H.P. Herzig, Metrology of refractive microlens arrays, in Photonics Europe (International Society for Optics and Photonics, 2004), pp. 43–51Google Scholar
  18. 18.
    V. Gomez, H. Ottevaere, H. Thienpont, Mach–Zehnder interferometer for real-time in situ monitoring of refractive microlens characteristics at the fabrication level. IEEE Photonics Technol. Lett. 20(9), 748–750 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    H. Sickinger, O.R. Falkenstoerfer, N. Lindlein, J. Schwider, Characterization of microlenses using a phase-shifting shearing interferometer. Opt. Eng. 33(8), 2680–2686 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    X. Zhu, S. Hu, L. Zhao, Focal length measurement of a microlens-array by grating shearing interferometry. Appl. Opt. 53(29), 6663–6669 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    U.P. Kumar, N.K. Mohan, M.P. Kothiyal, Characterization of micro-lenses based on single interferogram analysis using Hilbert transformation. Opt. Commun. 284(21), 5084–5092 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    A.J. Krmpot, G.J. Tserevelakis, B.D. Murić, G. Filippidis, D.V. Pantelić, 3D imaging and characterization of microlenses and microlens arrays using nonlinear microscopy. J. Phys. D: Appl. Phys. 46(19), 195101 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    H.H. Wahba, T. Kreis, Characterization of graded index optical fibers by digital holographic interferometry. Appl. Opt. 48(8), 1573–1582 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    E. Acosta, L. Garner, G. Smith, D. Vazquez, Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens. J. Opt. Soc. Am. A 22(3), 424–433 (2005)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    T. Anna, C. Shakher, D.S. Mehta, Three-dimensional shape measurement of micro-lens arrays using full-field swept-source optical coherence tomography. Opt. Lasers Eng. 48(11), 1145–1151 (2010)CrossRefGoogle Scholar
  26. 26.
    T. Zhang, I. Yamaguchi, Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett. 23(15), 1221–1223 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    V. Kebbel, J. Mueller, W.P. Jueptner, Characterization of aspherical micro-optics using digital holography: improvement of accuracy, in International Symposium on Optical Science and Technology (International Society for Optics and Photonics, 2002), pp. 188–197Google Scholar
  28. 28.
    F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, C. Depeursinge, Characterization of microlenses by digital holographic microscopy. Appl. Opt. 45(5), 829–835 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Wei, C. Wu, Y. Wang, Z. Dong, Efficient shape reconstruction of microlens using optical microscopy. IEEE Trans. Ind. Electron. 62(12), 7655–7664 (2015)CrossRefGoogle Scholar
  30. 30.
    U. Schnars, W. Jüptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    E. Cuche, P. Marquet, C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38(34), 6994–7001 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    E. Cuche, F. Bevilacqua, C. Depeursinge, Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24(5), 291–293 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    U. Schnars, W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer, Berlin, Heidelberg, 2005)Google Scholar
  34. 34.
    P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, G. Pierattini, Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Appl. Opt. 42(11), 1938–1946 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    V. Kumar, C. Shakher, Testing of micro-optics using digital holographic interferometric microscopy, in Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS) (SCITEPRESS—Science and Technology Publications, Lda, 2016), pp. 142–147Google Scholar
  36. 36.
    U. Schnars, W.P. Jüptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13(9), R85 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    C. Wagner, S. Seebacher, W. Osten, W. Jüptner, Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology. Appl. Opt. 38(22), 4812–4820 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    V. Kumar, M. Kumar, C. Shakher, Measurement of natural convective heat transfer coefficient along the surface of a heated wire using digital holographic interferometry. Appl. Opt. 53(27), G74–G83 (2014)CrossRefGoogle Scholar
  39. 39.
    V. Kumar, C. Shakher, Study of heat dissipation process from heat sink using lensless Fourier transform digital holographic interferometry. Appl. Opt. 54(6), 1257–1266 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    M. Takeda, Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: an overview. J. Sci. Ind. Metrol. 1(2), 79–99 (1990)MathSciNetCrossRefGoogle Scholar
  41. 41.
    E. Cuche, P. Marquet, C. Depeursinge, Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39(23), 4070–4075 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    R.M. Goldstein, H.A. Zebker, C.L. Werner, Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23(4), 713–720 (1988)ADSCrossRefGoogle Scholar
  43. 43.
    J. Kühn, F. Charrière, T. Colomb, E. Cuche, Y. Emery, C. Depeursinge, Digital holographic microscopy for nanometric quality control of micro-optical components, in Integrated Optoelectronic Devices 2007 (International Society for Optics and Photonics, 2007), pp. 64750V–64750VGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laser Applications and Holography LaboratoryInstrument Design Development Centre, Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations