Advertisement

Study of Endogenous Fluorescence as a Function of Tissues’ Conservation Using Spectral and Lifetime Measurements on Tumor or Epileptic Cortex Excision

  • F. Poulon
  • M. Zanello
  • A. Ibrahim
  • P. Varlet
  • B. Devaux
  • D. Abi Haidar
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 218)

Abstract

Until today the endogenous fluorescence of tissue were neglected and often consider as a source of noise in medical imaging, however recent work and future technologies seems to reconsider it as a new imaging modality in medical devices. One of the precursor fields for the use of autofluorescence in tissue is the study of cancerology, which was recognized as a powerful tool for the future of medical devices. Although many studies have been started and done in this field, there are still numerous aspects of the signal that are not well known yet such as time dependence after extraction of fresh tissues. In this work, freshly resected human samples were exanimated in order to investigate their autofluorescence changes with time. Primary results of this examination prove that fluorescence intensity and lifetime values of healthy and tumoral samples decreased slightly with time.

Keywords

Lifetime measurement Spectroscopy Autofluorescence Metastasis and cortical human samples 

Notes

Acknowledgements

This Work as a part of the MEVO project was supported by “Plan Cancer” program founded by INSERM (France), by CNRS with “Défi instrumental” grant, and the Institut National de Physique Nucléaire et de Physique des Particules (IN2P3). Thanks to the PIMPA Platform partly funded by the French program “Investissement d’Avenir” run by the “Agence Nationale pour la Recherche” (grant “Infrastructure d’avenir en Biologie Santé – ANR – 11-INBS-0006”).

References

  1. 1.
    J.M. López Piñero, Nine centuries of cranial surgery. Lancet 354(Suppl), SIV35 (1999)CrossRefGoogle Scholar
  2. 2.
    K. Uluç, G.C. Kujoth, M.K. Başkaya, Operating microscopes: past, present, and future. Neurosurg. Focus 27, E4 (2009).  https://doi.org/10.3171/2009.6.FOCUS09120CrossRefGoogle Scholar
  3. 3.
    K.W. Li, C. Nelson, I. Suk, G.I. Jallo, Neuroendoscopy: past, present, and future. Neurosurg. Focus 19, E1 (2005).  https://doi.org/10.3171/foc.2005.19.6.2CrossRefGoogle Scholar
  4. 4.
    G. Unsgaard, O.M. Rygh, T. Selbekk, T.B. Müller, F. Kolstad, F. Lindseth, T.A.N. Hernes, Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir. (Wien) 148, 235–253; Discussion 253 (2006).  https://doi.org/10.1007/s00701-005-0688-yCrossRefGoogle Scholar
  5. 5.
    Q.T. Ostrom, H. Gittleman, J. Xu, C. Kromer, Y. Wolinsky, C. Kruchko, J.S. Barnholtz-Sloan, CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro-Oncol. 18, v1–v75 (2016)CrossRefGoogle Scholar
  6. 6.
    D.A. Hardesty, N. Sanai, The value of glioma extent of resection in the modern neurosurgical era. Front. Neurol. 3.  https://doi.org/10.3389/fneur.2012.00140
  7. 7.
    N. Sanai, M.S. Berger, Glioma extent of resection and its impact on patient outcome. Neurosurgery 62, 753–766 (2008).  https://doi.org/10.1227/01.neu.0000318159.21731.cfCrossRefGoogle Scholar
  8. 8.
    P.V. Butte, A.N. Mamelak, M. Nuno, S.I. Bannykh, K.L. Black, L. Marcu, Fluorescence lifetime spectroscopy for guided therapy of brain tumors. NeuroImage 54, S125–S135 (2011).  https://doi.org/10.1016/j.neuroimage.2010.11.001CrossRefGoogle Scholar
  9. 9.
    A.H. Zehri, W. Ramey, J.F. Georges, M.A. Mooney, N.L. Martirosyan, M.C. Preul, P. Nakaji, Neurosurgical confocal endomicroscopy: a review of contrast agents, confocal systems, and future imaging modalities. Surg. Neurol. Int. 5, 60 (2014).  https://doi.org/10.4103/2152-7806.131638CrossRefGoogle Scholar
  10. 10.
    P.A. Valdés, D.W. Roberts, F.-K. Lu, A. Golby, Optical technologies for intraoperative neurosurgical guidance. Neurosurg. Focus 40, E8 (2016).  https://doi.org/10.3171/2015.12.FOCUS15550CrossRefGoogle Scholar
  11. 11.
    A. Chorvatova, D. Chorvat, Tissue fluorophores and their spectroscopic characteristics, ed. by L. Marcu, P. French, D. Elson, Fluorescence Lifetime Spectroscopy and Imaging (CRC Press, 2014), pp. 47–84Google Scholar
  12. 12.
    A.C. Croce, G. Bottiroli, Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur. J. Histochem. 58 (2014).  https://doi.org/10.4081/ejh.2014.2461
  13. 13.
    D.A. Haidar, B. Leh, M. Zanello, R. Siebert, Spectral and lifetime domain measurements of rat brain tumors. Biomed. Opt. Express 6, 1219–1233 (2015).  https://doi.org/10.1364/BOE.6.001219CrossRefGoogle Scholar
  14. 14.
    M. Zanello, F. Poulon, P. Varlet, F. Chretien, F. Andreiuolo, M. Pages, A. Ibrahim, J. Pallud, E. Dezamis, G. Abi-Lahoud, F. Nataf, B. Turak, B. Devaux, D. Abi-Haidar, Multimodal optical analysis of meningioma and comparison with histopathology. J. Biophotonics (2016).  https://doi.org/10.1002/jbio.201500251CrossRefGoogle Scholar
  15. 15.
    M. Zanello, A. Ibrahim, F. Poulon, P. Varlet, B. Devau, D. Abi Haidar, in Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology, PHOTOPTICS, vol. 1 (2016), pp. 13–17Google Scholar
  16. 16.
    D. Abi Haidar, B. Leh, A. Allaoua, A. Genoux, R. Siebert, M. Steffenhagen, D.A. Peyrot, N. Sandeau, C. Vever-Bizet, G. Bourg Heckly, I. Chebbi, Spectral and lifetime domain measurements of rat brain tumours, in SPIE (Ed.), Spectral and Lifetime Domain Measurements of Rat Brain Tumours (San Jose, United States, 2012), p. 82074P.  https://doi.org/10.1117/12.907411
  17. 17.
    B. Leh, R. Siebert, H. Hamzeh, L. Menard, M.-A. Duval, Y. Charon, D. Abi Haidar, Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy. J. Biomed. Opt. 17, 108001 (2012).  https://doi.org/10.1117/1.JBO.17.10.108001ADSCrossRefGoogle Scholar
  18. 18.
    A. Ibrahim, F. Poulon, R. Habert, C. Lefort, A. Kudlinski, D.A. Haidar, Characterization of fiber ultrashort pulse delivery for nonlinear endomicroscopy. Opt. Express 24, 12515–12523 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    A. Ibrahim, F. Poulon, F. Melouki, M. Zanello, P. Varlet, R. Habert, B. Devaux, A. Kudlinski, D. Abi Haidar, Spectral and fluorescence lifetime endoscopic system using a double-clad photonic crystal fiber. Opt. Lett. 41, 5214 (2016).  https://doi.org/10.1364/OL.41.005214ADSCrossRefGoogle Scholar
  20. 20.
    G. Papayan, N. Petrishchev, M. Galagudza, Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion. Photodiagnosis Photodyn. Ther. 11, 400–408 (2014).  https://doi.org/10.1016/j.pdpdt.2014.05.003CrossRefGoogle Scholar
  21. 21.
    V.K. Ramanujan, J.-H. Zhang, E. Biener, B. Herman, Multiphoton fluorescence lifetime contrast in deep tissue imaging: prospects in redox imaging and disease diagnosis. J. Biomed. Opt. 10, 051407 (2005).  https://doi.org/10.1117/1.2098753ADSCrossRefGoogle Scholar
  22. 22.
    M.C. Skala, K.M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K.W. Eliceiri, J.G. White, N. Ramanujam, In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. 104, 19494–19499 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    S. Takehana, M. Kaneko, H. Mizuno, Endoscopic diagnostic system using autofluorescence. Diagn. Ther. Endosc. 5, 59–63 (1999)CrossRefGoogle Scholar
  24. 24.
    M. Wolman, Lipid pigments (chromolipids): their origin, nature, and significance. Pathobiol. Annu. 10, 253 (1980)Google Scholar
  25. 25.
    S.A. Toms, W.-C. Lin, R.J. Weil, M.D. Johnson, E.D. Jansen, A. Mahadevan-Jansen, Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity. Neurosurgery 61, 327–336 (2007).  https://doi.org/10.1227/01.neu.0000279226.68751.21CrossRefGoogle Scholar
  26. 26.
    A.C. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, G. Bottiroli, Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins. Photochem. Photobiol. 77, 309–318 (2003)CrossRefGoogle Scholar
  27. 27.
    M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010).  https://doi.org/10.1021/cr900343zCrossRefGoogle Scholar
  28. 28.
    A.S. Kristoffersen, S.R. Erga, B. Hamre, Ø. Frette, Testing fluorescence lifetime standards using two-photon excitation and time-domain instrumentation: rhodamine b, coumarin 6 and lucifer yellow. J. Fluoresc. 24, 1015–1024 (2014).  https://doi.org/10.1007/s10895-014-1368-1CrossRefGoogle Scholar
  29. 29.
    L. Marcu, Fluorescence lifetime techniques in medical applications. Ann. Biomed. Eng. 40, 304–331 (2012).  https://doi.org/10.1007/s10439-011-0495-yCrossRefGoogle Scholar
  30. 30.
    A.G. Ryder, S. Power, T.J. Glynn, J.J. Morrison, Time-domain measurement of fluorescence lifetime variation with pH, in BiOS 2001 The International Symposium on Biomedical Optics. International Society for Optics and Photonics (2001), pp. 102–109Google Scholar
  31. 31.
    P.P. Provenzano, K.W. Eliceiri, P.J. Keely, Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin. Exp. Metastasis 26, 357–370 (2009).  https://doi.org/10.1007/s10585-008-9204-0CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • F. Poulon
    • 1
  • M. Zanello
    • 1
    • 2
  • A. Ibrahim
    • 1
  • P. Varlet
    • 3
  • B. Devaux
    • 2
  • D. Abi Haidar
    • 1
    • 4
  1. 1.IMNC Laboratory, UMR 8165, CNRS/IN2P3Paris-Saclay UniversityOrsayFrance
  2. 2.Department of NeurosurgerySainte Anne HospitalParisFrance
  3. 3.Department of NeuropathologySainte Anne HospitalParisFrance
  4. 4.Paris Diderot UniversityParisFrance

Personalised recommendations