Waveguide Evanescent Field Fluorescence and Scattering Microscopy: The Status Quo

  • Silvia MittlerEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 218)


In the last few years Waveguide Evanescent Field Fluorescence (WEFF) and Scattering (WEFS) microscopy were developed which are alternatives to TIR and TIRF microscopy. Both technologies implement a slab waveguide-microscopy chip with a coupling grating. The technologies are described and compared to TIR and TIRF microscopy. The advantages of the waveguide method are clearly addressed. A brief history of the technology’s development and similar activities in the field are discussed. Application examples from both WEF microscopies follow: static distance mapping with a multimode waveguide, dynamic solubilisation studies of cell plasma membranes and the kinetic response of osteoblasts to trypsin (WEFF); bacteria sterilization as well as cell adhesion and granularity studies (WEFS). The combination of both methods is discussed and found not suitable. In order to mass fabricate the necessary waveguide chips with the grating an all-polymer-waveguide chip was developed. This should allow to bring the new microscopy methods to the interested scientific community.


Waveguides Evanescent fields Microscopy Scattering Fluorescence Interfaces Cells Bacteria 



Many co-workers, students, PDFs and colleagues are thanked for their contribution in the past, the present and the future for developing and applying WEFF and WEFS microscopy: Frank Thoma, Uwe Langbein, John J. Armitage, Huge Trembley, Michael Nietsche, Abdollah Hassanzadeh, Elisabeth Pruski, Jeffrey S. Dixon, Stephen Sims, Rebbeca Stuchburry, Sabiha Hacibekiroglu, Daniel Imruck, Christopher Halfpap, Michael Morawitz, Qamrun Nahar, Darryl K. Knight, Susanne Armstrong, Jeremia Shuster, Frederik Fleisser, Mihaela Stefan, Kibret Mequanint, Beth Gillies, Rene Harrison, Gordon Southam, Cheryle Seguin, Hong Hong Chen, Donglin Bai, Douglas Hamilton and Rony Sharon.


  1. 1.
    X.F. Niu, Y.L. Wang, Y.L. Luo, J. Xin, Y.G. Li, J. Mater. Sci. Technol. 21, 571–576 (2005)Google Scholar
  2. 2.
    H. Storrie, M.O. Guler, S.N. Abu-Amara, T. Volberg, M. Rao, B. Geiger, S.I. Stupp, Biomaterials 28, 4608–4618 (2007)CrossRefGoogle Scholar
  3. 3.
    J.S. Burmeister, L.A. Olivier, W.M. Reichert, G.A. Truskey, Biomaterials 19, 307–325 (1998)CrossRefGoogle Scholar
  4. 4.
    W.T. Chen, S.J. Singer, J. Cell Biol. 95, 205–222 (1982)CrossRefGoogle Scholar
  5. 5.
    J.S. Burmeister, G.A. Truskey, J.L. Yarbough, W.M. Reichert, Biotechnol. Prog. 10, 26–31 (1994)CrossRefGoogle Scholar
  6. 6.
    K.F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, M. Bastmeyer, Biophys. J. 76, 509–516 (1999)CrossRefGoogle Scholar
  7. 7.
    H. Verschueren, J. Cell Sci. 75, 279–301 (1984)Google Scholar
  8. 8.
    B. Braun, P. Fromherz, Appl. Phys. A-Mater. Sci. Process. 65, 341–348 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    E. Atilgan, B. Ovryn, Curr. Pharm. Biotechnol. 10, 508–514 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Abercrombie, J.E. Heaysman, S.M. Pegrum, Exp. Cell Res. 67, 359–367 (1971)CrossRefGoogle Scholar
  11. 11.
    K.E. Sapsford, L.C. Shiver-Lake, in Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, ed. by M. Zourob, S. Elwary, A.P.F. Turner (Springer, New York, 2008), pp. 109–123CrossRefGoogle Scholar
  12. 12.
    J. Pizarro-Cerda, P. Cossart, Cell 124, 715–725 (2006)CrossRefGoogle Scholar
  13. 13.
    J.D. Oliver, J. Microbiol. 43, 93–100 (2005)Google Scholar
  14. 14.
    A.E. Madkour, G.N. Tew, Polym. Int. 57, 6 (2008)CrossRefGoogle Scholar
  15. 15.
    A.E. Madkour, J.M. Dabkowski, K. Nusslein, G.N. Tew, Langmuir 25, 1060–1067 (2009)CrossRefGoogle Scholar
  16. 16.
    W.E. Stamm, Ann. Int. Med. 89, 764–769 (1978)CrossRefGoogle Scholar
  17. 17.
    E.M. Hetrick, M.H. Schoenfisch, Chem. Soc. Rev. 35, 780–789 (2006)CrossRefGoogle Scholar
  18. 18.
    G.E. Christianson, 2004, in Molecular Adhesion and Its Applications, The Sticky Universe, ed. by K. Kendal, pp. 275–303Google Scholar
  19. 19.
    K. Vasilev, J. Cook, H.J. Griesser, Expert Rev. Med. Devices 6, 553–567 (2009)CrossRefGoogle Scholar
  20. 20.
    L. Pires, K. Sachsenheimer, T. Kleintschek, A. Waldbaur, T. Schwartz, B.E. Rapp, Biosens. Bioelectron. 47, 157–163 (2013)CrossRefGoogle Scholar
  21. 21.
    N.P. Pera, A. Kouki, S. Haataja, H.M. Branderhorst, R.M.J. Liskamp, G.M. Visser, J. Finne, R.J. Pieters, Org. Biomol. Chem. 8, 2425–2429 (2010)CrossRefGoogle Scholar
  22. 22.
    A.D. Taylor, J. Ladd, J. Homolas, S. Jang, in Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, XXXII, ed. by M. Zourob, S. Elwary, A. Turner (Springer, 2008), pp. 83–108Google Scholar
  23. 23.
    M. Schmidt, M.K. Hourfar, S.-B. Nicol, A. Wahl, J. Heck, C. Weis, T. Tonn, H.-P. Spengler, T. Montag, E. Seifried, W.K. Roth, Transfusion 46, 1367–1373 (2006)CrossRefGoogle Scholar
  24. 24.
    I.R. Cooper, S.T. Meikle, G. Standen, G.W. Hanlon, M. Santin, J. Microbiol. Methods 78, 40–44 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Zourob, S. Mohr, B.J.T. Brown, P.F. Fielden, M.B. McDonnell, N.J. Goddard, Biosens. Bioelectron. 21, 293–302 (2005)CrossRefGoogle Scholar
  26. 26.
    A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, M. Skorobogatiy, Opt. Express 20, 5344–5355 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    A. Bauereiss, O. Welzel, J. Jung, S. Grosse-Holz, N. Lelental, P. Lewczuk, E.M. Wenzel, J. Kornhuber, T.W. Groemer, Traffic 16, 655–675 (2015)CrossRefGoogle Scholar
  28. 28.
    X. Liu, E.S. Welf, J.M. Haugh, J. R. Soc. Interface 12, 20141412 (1–11) (2015)Google Scholar
  29. 29.
    L.V. Smith, L.K. Tamm, R.M. Ford, Langmuir 18, 5247–5255 (2002)CrossRefGoogle Scholar
  30. 30.
    M.A.S. Vigeant, M. Wagner, L.K. Tamm, R.M. Ford, Langmuir 17, 2235–2242 (2001)CrossRefGoogle Scholar
  31. 31.
    G.D. Byrne, M.C. Pitter, J. Zhang, F.H. Falcone, S. Stolnik, M.G. Somekh, J. Microsc. 231, 168–179 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    F. Thoma, U. Langbein, S. Mittler-Neher, Opt. Commun. 134, 16–20 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    F. Thoma, J.J. Armitage, H. Trembley, B. Menges, U. Langbein, S. Mittler-Neher, Proc. SPIE 3414, 242–249 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    T.S. Hug, J.E. Prenosil, M. Morbidelli, Biosens. Bioelectron. 16, 865–874 (2001)CrossRefGoogle Scholar
  35. 35.
    T.S. Hug, J.E. Prenosil, P. Maier, M. Morbidelli, Biotechnol. Bioeng. 80, 213–221 (2002)CrossRefGoogle Scholar
  36. 36.
    T.S. Hug, J.E. Prenosil, P. Maier, M. Morbidelli, Biotechnol. Prog. 18, 1408–1413 (2002)CrossRefGoogle Scholar
  37. 37.
    R. Horvath, H.C. Pedersen, N. Skivesen, D. Selmeczi, N.B. Larsen, Appl. Phys. Lett. 86, 071101 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    H.M. Grandin, B. Städler, M. Textor, J. Vörös, Biosensens. Bioelectron. 21, 1476–1482 (2006)CrossRefGoogle Scholar
  39. 39.
    A. Hassanzadeh, M. Nitsche, S. Mittler, S. Armstrong, J. Dixon, U. Langbein, Appl. Phys. Lett. 92, 233503 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    A. Hassanzadeh, M. Nitsche, S. Armstrong, N. Nabavi, R. Harrison, S.J. Dixon, U. Langbein, S. Mittler, Biomed. Opt. 15 036018-1–036018-7 (2010)Google Scholar
  41. 41.
    A. Hassanzadeh, S. Mittler, Opt. Eng. 50, 071103 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    A. Hassanzadeh, H. Kan Ma, S.J. Dixon, S. Mittler, Biomed. Opt. 17(076025), 1–7 (2012)Google Scholar
  43. 43.
    A. Hassanzadeh, S. Armstrong, S.J. Dixon, S. Mittler, Appl. Phys. Lett. 94, 033503 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    B. Agnarsson, S. Ingthorsson, T. Gudjonsson, K. Leosson, Opt. Express 17, 5075–5082 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, K. Leosson, Microelectron. Eng. 87, 56–61 (2010)CrossRefGoogle Scholar
  46. 46.
    H. Keshmiri, B. Agnarsson, K. Leósson, SPIE, vol. 8090, 80900 D1-6 (2011)Google Scholar
  47. 47.
    B. Agnarsson, A.B. Jonsdottir, N.B. Arnfinnsdottir, K. Leosson, Opt. Express 19, 22929–22935 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    K. Leosson, B. Agnarsson, Micromachines 3, 114–125 (2012)CrossRefGoogle Scholar
  49. 49.
    Q. Nahar, F. Fleissner, J. Shuster, M. Morawitz, C. Halfpap, M. Stefan, G. Southam, U. Langbein, S. Mittler, J. Biophotonics 7, 542–551 (2014)CrossRefGoogle Scholar
  50. 50.
    B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V.P. Zhdanov, F. Höök, ACS Nano 9, 11849–11862 (2015)CrossRefGoogle Scholar
  51. 51.
    C. Halfpap, M. Morawitz, A. Peter, N. Detrez, S. Mittler, U. Langbein, DGaO Proceedings, 0287-2012 (2012)Google Scholar
  52. 52.
    S. Mittler, Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology, PHOTOPTICS 2016 (SciTePress, 2016), pp. 201–212Google Scholar
  53. 53.
    D.C. Adler, T.H. Ko, J.G. Fujimoto, Speckle reduction in optical coherence (2004)Google Scholar
  54. 54.
    R. Horvath, J. Vörös, R. Graf, G. Fricsovszky, M. Textor, L.R. Lindvold, N.D. Spencer, E. Papp, Appl. Phys. B 72, 441–447 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    L.L. Lanier, N.L. Warner, J. Immunol. Methods 47, 25–30 (1981)CrossRefGoogle Scholar
  56. 56.
    J.W. Smit, C.J.L.M. Meijer, F. Decay, T.M. Feltkamp, J. Immunol. Methods 6, 93–98 (1974)CrossRefGoogle Scholar
  57. 57.
    J.-W. Su, W.-C. Hsu, J.-W. Tjiu, C.-P. Chiang, C.-W. Huang, K.-B. Sunga, J. Biomed. Opt. 19, 075007 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    R.P. Hedrick, B. Petri, T.S. McDowell, K. Mukkatira, L.J. Sealey, Dis. Aquat. Org. 74, 113–118 (2007)CrossRefGoogle Scholar
  59. 59.
    J. Kuo, M. Asce, C.-L. Chen, M. Nellor, J. Environ. Eng. 129, 774–779 (2003)CrossRefGoogle Scholar
  60. 60.
    M. Berney, F. Hammes, F. Bosshard, H.-U. Weilenmann, T. Egli, Appl. Environ. Microbiol. 73, 3283–3290 (2007)CrossRefGoogle Scholar
  61. 61.
    B. Durbeej, L.A. Eriksson, J. Photochem. Photobiol. A: Chem. 152, 95–101 (2002)CrossRefGoogle Scholar
  62. 62.
    G.A. Truskey, J.S. Burmeister, E. Grapa, W.M. Reichert, J. Cell Sci. 103, 491–499 (1992)Google Scholar
  63. 63.
    J.S. Burmeister, G.A. Truskey, W.M. Reichert, J. Microsc.-Oxford 173, 39–51 (1994)CrossRefGoogle Scholar
  64. 64.
    F. Fleissner, M. Morawitz, S.J. Dixon, U. Langbein, S. Mittler, J. Biophotonics 1–12 (2014)Google Scholar
  65. 65.
    N. Tawil, E. Wilson, S. Carbonetto, J. Cell Biol. 120, 261–271 (1993)CrossRefGoogle Scholar
  66. 66.
    V.N. Ngassam, M.C. Howland, A. Sapuri-Butti, N. Rosidi, A.N. Parikh, Soft Matter 8, 3734–3738 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    D. Lichtenberg, J. Robson, E.A. Dennis, Biochem. Biophys. Acta 821, 470–478 (1985)CrossRefGoogle Scholar
  68. 68.
    G. Csucs, J.J. Ramsden, Biochem. Biophys. Acta 1369, 304–308 (1998)CrossRefGoogle Scholar
  69. 69.
    A. Helenius, K. Simons, Biochem. Biophys. Acta 415, 29–79 (1975)Google Scholar
  70. 70.
    J.R. Silvius, Annu. Rev. Biophys. Biomol. Struct. 21, 323–348 (1992)CrossRefGoogle Scholar
  71. 71.
    A. Klein, Diploma Thesis, RheinMain University, Rüsseleheim, Germany (2008)Google Scholar
  72. 72.
    S. Kandeepan, J.A. Paquette, J.B. Gilroy, S. Mittler, Chem. Vap. Depos. 21(275), 280 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyThe University of Western OntarioLondonCanada

Personalised recommendations