Adipose-Derived Stem Cells to Facilitate Ulcer Healing: Future Strategies

  • Nicoletta Del PapaEmail author
  • Eleonora Zaccara
  • Gabriele Di Luca
  • Wanda Maglione


Digital ulcers are a rather frequent and invalidating complication in systemic sclerosis, often showing a very slow or null tendency to heal, in spite of the commonly used systemic and local therapeutic procedures. Recently, stem cell therapy has emerged as a new approach to accelerate wound healing. Multipotent mesenchymal stromal cells are considered an attractive candidate for cell-based therapies because of their immunomodulatory, angiogenic, anti-inflammatory, and anti-apoptotic effects. Mesenchymal cells from the bone marrow have been first extensively characterized. Adipose tissue represents an additional abundant and accessible source of stem cells. At present, adipose-derived stem cells are one of the most attractive and promising sources of adult stem cells for cell therapy, finding a field of application in the treatment of scleroderma skin lesions, including digital ulcers.


Systemic sclerosis Ulcers Adipose tissue Stem cells Cell therapy Fat transplantation Ulcer healing 


  1. 1.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.CrossRefGoogle Scholar
  2. 2.
    Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89:219–29.CrossRefGoogle Scholar
  3. 3.
    Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol. 2007;25:19–25.CrossRefGoogle Scholar
  4. 4.
    Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360(19):1989–2003.CrossRefGoogle Scholar
  5. 5.
    Distler JH, Gay S, Distler O. Angiogenesis and vasculogenesis in systemic sclerosis. Rheumatology. 2006;45(Suppl 3):iii26–7.PubMedGoogle Scholar
  6. 6.
    Mimeault M, Hauke R, Batra S. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Therap. 2007;82:252–64.CrossRefGoogle Scholar
  7. 7.
    Körbling M, Estrov Z. Adult stem cells for tissue repair—a new therapeutic concept? N Engl J Med. 2003;349:570–82.CrossRefGoogle Scholar
  8. 8.
    Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opinion on Biological Ther. 2006;6:567–78.CrossRefGoogle Scholar
  9. 9.
    Korin N, Levenberg S. Engineering human embryonic stem cell differentiation. Biotechnol Genet Eng Rev. 2007;24:243–61.CrossRefGoogle Scholar
  10. 10.
    Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134:877–86.CrossRefGoogle Scholar
  11. 11.
    Caplan AI. Adult mesenchymal stem cells: when, where, and how. Stem Cells Int. 2015;2015:628767.CrossRefGoogle Scholar
  12. 12.
    Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cell Dev. 2012;21(14):2724–52.CrossRefGoogle Scholar
  13. 13.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRefGoogle Scholar
  14. 14.
    Motegi SI, Ishikawa O. Mesenchymal stem cells: the roles and functions in cutaneous wound healing and tumor growth. J Dermatol Sci. 2017;86(2):83–9.CrossRefGoogle Scholar
  15. 15.
    Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92:26–36.CrossRefGoogle Scholar
  16. 16.
    Procházka V, Gumulec J, Jaluvka F, Salounová D, Jonszta T, Czerny D, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19:1413–24.CrossRefGoogle Scholar
  17. 17.
    Kirana S, Stratmann B, Lammers D, Negrean M, Stirban A, Minartz P, et al. Wound therapy with autologous bone marrow stem cells in diabetic patients with ischaemia-induced tissue ulcers affecting the lower limbs. Int J Clin Pract. 2007;61:690–4.CrossRefGoogle Scholar
  18. 18.
    Hanson SE, Kleinbeck KR, Cantu D, Kim J, Bentz ML, Faucher LD, et al. Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model. J Tissue Eng Regen Med. 2016;10(2):E90–100.CrossRefGoogle Scholar
  19. 19.
    Ichioka S, Yokogawa H, Sekiya N, Kouraba S, Minamimura A, Ohura N, et al. Determinants of wound healing in bone marrow-impregnated collagen matrix treatment: impact of microcirculatory response to surgical debridement. Wound Repair Regen. 2009;17:492–7.CrossRefGoogle Scholar
  20. 20.
    Ichioka S, Kouraba S, Sekiya N, Ohura N, Nakatsuka T. Bone marrow-impregnated collagen matrix for wound healing: experimental evaluation in a microcirculatory model of angiogenesis, and clinical experience. Br J Plast Surg. 2005;58(8):1124–30.CrossRefGoogle Scholar
  21. 21.
    Mizuno H, Miyamoto M, Shimamoto M, Koike S, Hyakusoku H, Kuroyanagi Y. Therapeutic angiogenesis by autologous bone marrow cell implantation together with allogeneic cultured dermal substitute for intractable ulcers in critical limb ischaemia. J Plast Reconstr Aesthet Surg. 2010;63(11):1875–82.CrossRefGoogle Scholar
  22. 22.
    Nevskaya T, Ananieva L, Bykovskaia S, Eremin I, Karandashov E, Khrennikov J, et al. Autologous progenitor cell implantation as a novel therapeutic intervention for ischaemic digits in systemic sclerosis. Rheumatology. 2009;48(1):61–4.CrossRefGoogle Scholar
  23. 23.
    Kuwana M. Potential benefit of statins for vascular disease in systemic sclerosis. Curr Opin Rheumatol. 2006;18:594–600.CrossRefGoogle Scholar
  24. 24.
    Del Papa N, Cortiana M, Vitali C, Silvestris I, Maglione W, Comina DP, et al. Simvastatin reduces endothelial activation and damage but is partially ineffective in inducing endothelial repair in systemic sclerosis. J Rheumatol. 2008;35(7):1323–8.PubMedGoogle Scholar
  25. 25.
    Abou-Raya A, Abou-Raya S, Helmii M. Statins: potentially useful in therapy of systemic sclerosis-related Raynaud’s phenomenon and digital ulcers. J Rheumatol. 2008;35:1801–8.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189:54–63.CrossRefGoogle Scholar
  27. 27.
    Musina R, Bekchanova E, Sukhikh G. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med. 2005;139:504–9.CrossRefGoogle Scholar
  28. 28.
    Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose derived adherent stromal (hADAS) cells. Stem Cells. 2005;23:412–23.CrossRefGoogle Scholar
  29. 29.
    Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow-and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells. 2007;25:750–60.CrossRefGoogle Scholar
  30. 30.
    Shim YH, Zhang RH. Literature review to optimize the autologous fat transplantation procedure and recent technologies to improve graft viability and overall outcome: a systematic and retrospective analytic approach. Aesthet Plast Surg. 2017;41(4):815–31.CrossRefGoogle Scholar
  31. 31.
    Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006;208:64–76.CrossRefGoogle Scholar
  32. 32.
    Eto H, Suga H, Matsumoto D, Inoue K, Aoi N, Kato H, et al. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg. 2009;124:1087–97.CrossRefGoogle Scholar
  33. 33.
    Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.CrossRefGoogle Scholar
  34. 34.
    Wong VW, Gurtner GC, Longaker MT. Wound healing: a paradigm for regeneration. Mayo Clin Proc. 2013;88(9):1022–31.CrossRefGoogle Scholar
  35. 35.
    Shingyochi Y, Orbay H, Mizuno H. Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther. 2015;15(9):1285–92.CrossRefGoogle Scholar
  36. 36.
    Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 2014;22(3):313–25.CrossRefGoogle Scholar
  37. 37.
    Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol. 2009;29(4):503–10.CrossRefGoogle Scholar
  38. 38.
    Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun. 2005;332:370–9.CrossRefGoogle Scholar
  39. 39.
    Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109:656–63.CrossRefGoogle Scholar
  40. 40.
    Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8.CrossRefGoogle Scholar
  41. 41.
    Fraser JK, Schreiber R, Strem B, Zhu M, Alfonso Z, Wulur I, et al. Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nat Clin Pract Cardiovasc Med. 2006;3(Suppl 1):S33–7.CrossRefGoogle Scholar
  42. 42.
    Kim EK, Li G, Lee TJ, Hong JP. The effect of human adipose-derived stem cells on healing of ischemic wounds in a diabetic nude mouse model. Plast Reconstr Surg. 2011;128(2):387–94.CrossRefGoogle Scholar
  43. 43.
    Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns. 2014;40(7):1375–83.CrossRefGoogle Scholar
  44. 44.
    Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, Rouyer O, Ardisson O, et al. Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res Ther. 2015;6:241.CrossRefGoogle Scholar
  45. 45.
    Lee SM, Lee SC, Kim SJ. Contribution of human adipose tissue-derived stem cells and the secretome to the skin allograft survival in mice. J Surg Res. 2014;188:280–9.CrossRefGoogle Scholar
  46. 46.
    Hsiao ST-F, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY, et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev. 2012;21:2189–203.CrossRefGoogle Scholar
  47. 47.
    Park BS, Jang KA, Sung JH, Park JS, Kwon YH, Kim KJ, et al. Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg. 2008;34:1323–6.PubMedGoogle Scholar
  48. 48.
    Cerqueira MT, Pirraco RP, Marques AP. Stem cells in skin wound healing: are we there yet? Adv Wound Care (New Rochelle). 2016;5(4):164–75.CrossRefGoogle Scholar
  49. 49.
    Cross KJ, Mustoe TA. Growth factors in wound healing. Surg Clin North Am. 2003;83:531.CrossRefGoogle Scholar
  50. 50.
    Choi JR, Yong KW, Wan Safwani WK. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cell Mol Life Sci. 2017;74(14):2587–600.CrossRefGoogle Scholar
  51. 51.
    Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem. 2007;20(6):867–76.CrossRefGoogle Scholar
  52. 52.
    Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z, et al. Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A. 2009;15(8):2039–50.CrossRefGoogle Scholar
  53. 53.
    Hsiao ST, Lokmic Z, Peshavariya H, Abberton KM, Dusting GJ, Lim SY, et al. Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells. Stem Cells Dev. 2013;22(10):1614–23.CrossRefGoogle Scholar
  54. 54.
    Bekhite MM, Finkensieper A, Rebhan J, Huse S, Schultze-Mosgau S, Figulla HR, et al. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells. Stem Cells Dev. 2014;23(4):333–51.CrossRefGoogle Scholar
  55. 55.
    Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–8.CrossRefGoogle Scholar
  56. 56.
    Li H, Zimmerlin L, Marra KG, Donnenberg VS, Donnenberg AD, Rubin JP. Adipogenic potential of adipose stem cell subpopulations. Plast Reconstr Surg. 2011;128(3):663–72.CrossRefGoogle Scholar
  57. 57.
    Sukmawati D, Tanaka R. Introduction to next generation of endothelial progenitor cell therapy: a promise in vascular medicine. Am J Transl Res. 2015;7:411–21.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Dykstra JA, Facile T, Patrick RJ, Francis KR, Milanovich S, Weimer JM, et al. Concise review: fat and furious: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Transl Med. 2017;6(4):1096–108.CrossRefGoogle Scholar
  59. 59.
    Dar A, Itskovitz-Eldor J. Therapeutic potential of perivascular cells from human pluripotent stem cells. J Tissue Eng Regen Med. 2015;9(9):977–87.CrossRefGoogle Scholar
  60. 60.
    Cipolletta D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology. 2014;142(4):517–25.CrossRefGoogle Scholar
  61. 61.
    Coleman SR. Structural fat grafting: more than a permanent filler. Plast Reconstr Surg. 2006;118(3 Suppl):108S–20S.CrossRefGoogle Scholar
  62. 62.
    Del Papa N, Zaccara E, Andracco R, Maglione W, Vitali C. Adipose-derived cell transplantation in systemic sclerosis: state of the art and future perspectives. J Scleroderma Relat Disord. 2017;2:33–41.CrossRefGoogle Scholar
  63. 63.
    Del Papa N, Caviggioli F, Sambataro D, Zaccara E, Vinci V, Di Luca G, et al. Autologous fat grafting in the treatment of fibrotic perioral changes in patients with systemic sclerosis. Cell Transplant. 2015;24:63–72.CrossRefGoogle Scholar
  64. 64.
    Onesti MG, Fioramonti P, Carella S, Fino P, Marchese C, Scuderi N. Improvement of mouth function disability in systemic sclerosis patients over one year in a trial of fat transplantation versus adipose-derived stromal cells. Stem Cells Int. 2016;2016:2416192.CrossRefGoogle Scholar
  65. 65.
    Sautereau N, Daumas A, Truillet R, Jouve E, Magalon J, Veran J, et al. Efficacy of autologous microfat graft on facial handicap in systemic sclerosis patients. Plast Reconstr Surg Glob Open. 2016;4(3):e660.CrossRefGoogle Scholar
  66. 66.
    Granel B, Daumas A, Jouve E, Harlé JR, Nguyen PS, Chabannon C, et al. Safety, tolerability and potential efficacy of injection of autologous adipose derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial. Ann Rheum Dis. 2015;74(12):2175–82.CrossRefGoogle Scholar
  67. 67.
    Bank J, Fuller SM, Henry GI, Zachary LS. Fat grafting to the hand in patients with Raynaud phenomenon: a novel therapeutic modality. Plast Reconstr Surg. 2014;133(5):1109–18.CrossRefGoogle Scholar
  68. 68. NCT02558543.
  69. 69.
    Del Bene M, Pozzi MR, Rovati L, Mazzola I, Erba G, Bonomi S. Autologous fat grafting for scleroderma-induced digital ulcers. An effective technique in patients with systemic sclerosis. Handchir Mikrochir Plast Chir. 2014;46:242–7.CrossRefGoogle Scholar
  70. 70.
    Del Papa N, Di Luca G, Sambataro D, Zaccara E, Maglione W, Gabrielli A, et al. Regional implantation of autologous adipose tissue-derived cells induces a prompt healing of long-lasting indolent digital ulcers in patients with sys-temic sclerosis. Cell Transplant. 2015;24(11):2297–305.CrossRefGoogle Scholar
  71. 71.
    Koenen P, Spanholtz TA, Maegele M, Stürmer E, Brockamp T, Neugebauer E, et al. Acute and chronic wound fluids inversely influence adipose-derived stem cell function: molecular insights into impaired wound healing. Int Wound J. 2015;12(1):10–6.CrossRefGoogle Scholar
  72. 72.
    Capelli C, Zaccara E, Cipriani P, Di Benedetto P, Maglione W, Andracco R, et al. Phenotypical and functional characteristics of “in vitro” expanded adipose-derived mesenchymal stromal cells from patients with systemic sclerosis. Cell Transplant. 2017;26(5):841–54.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicoletta Del Papa
    • 1
    Email author
  • Eleonora Zaccara
    • 1
  • Gabriele Di Luca
    • 1
  • Wanda Maglione
    • 1
  1. 1.Department of RheumatologyASST Gaetano PiniMilanItaly

Personalised recommendations