Advertisement

Alternative Therapeutic Approaches in Skin Ulcers Due to Systemic Sclerosis

  • Nabil George
  • Todd Kanzara
  • Kuntal Chakravarty
Chapter

Abstract

Digital ulcerations (DU) are a frequent presentation and complication of systemic sclerosis caused by sudden acute critical tissue ischaemia of the upper and or lower limb extremities. DU can be a cause of significant painful disability, often interfering with quality of life. Management of patients with DU requires considerable time and resources. Most patients respond to conventional therapies of vasodilatation as described earlier; however, this chapter will focus on the alternative therapeutic approaches that may be considered in rare cases when conventional methods fail. A small proportion of patients may require such alternative therapies, most likely alongside conventional methods. There is a paucity of more robust evidence such as randomised controlled studies to support the use of alternative treatments. Alternative therapies may be considered more complimentary than truly ‘alternative’ options and may perform better in combination with conventional therapies depending on the severity of the illness.

Keywords

Alternative Hyperbaric Oxygen Botulinum Tocopherol Vitamin e Nitric oxide Pneumatic compression Ultrasound Iontophoresis Maggot Myiasis Herbal Remedies 

References

  1. 1.
    Thom SR. Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol. 2009;106:988–95.CrossRefGoogle Scholar
  2. 2.
    NHS Commissioning board. Clinical commissioning policy: the use of hyperbaric oxygen therapy; 2013.Google Scholar
  3. 3.
    Nylander G, Lewis D, Nordstrom H, Larsson J. Reduction of postischemic edema with hyperbaric oxygen. Plast Reconstr Surg. 1985;76(4):596–603.CrossRefGoogle Scholar
  4. 4.
    Duling BR. Microvascular responses to alterations in oxygen tension. Circ Res. 1972 Oct;31:481–9.CrossRefGoogle Scholar
  5. 5.
    Juha HA, Niinikoski MD. Clinical hyperbaric oxygen therapy, wound perfusion, and transcutaneous oximetry. Wold Journal of Surgery. 2004;28(3):307–11.CrossRefGoogle Scholar
  6. 6.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press; 2000.Google Scholar
  7. 7.
    de Andrade SM, Santos ICRV. Hyperbaric oxygen therapy for wound care. Revista Gaucha de Enfermagem. 2016;37(2):e59257.CrossRefGoogle Scholar
  8. 8.
    Krane P, Bennett MH, Martyn-St James M, Schnabel A, Debus SE. Hyperbaric oxygen therapy for chronic wounds (Review): The Cochrane Collaboration; 2012.Google Scholar
  9. 9.
    Markus YM, Bell MJ, Evans AW. Ischemic scleroderma wounds successfully treated with hyperbaric oxygen therapy. J Rheumatol. 2006;33(8):1694–6.PubMedGoogle Scholar
  10. 10.
    Gerodimos C, Stefanidou S, Kotsiou M, Melekos T, Mesimeris T. Hyperbaric oxygen treatment of intractable ulcers in a systemic sclerosis patient. Aristotle Univ Med J. 2013;40(3):19–22.Google Scholar
  11. 11.
    UKDiving.co.uk. Hyperbaric Chamber Locations Across The UK. [Online].; July 2015 [cited 16 February 2017]. Available from: http://www.ukdiving.co.uk/information/hyperbaric.htm.
  12. 12.
    Worldwide Hyperbaric Chamber Locator, Contact London Recompression & Hyperbaric facilities - The London Diving Chamber. All Regions >> North America. [Online]. February 2017. [cited 16 February 2017]. Available from: http://www.londondivingchamber.co.uk/index.php?id=contact&page=11&region=8&country=64
  13. 13.
    Bove AA. Merck Manual. [Online]; 2013 [cited 2015 March 16. Available from: http://www.merckmanuals.com/home/injuries_and_poisoning/diving_and_compressed_air_injuries/barotrauma.html
  14. 14.
    Erbguth FJ. Historical notes on botulism, Clostridium botulinum, botulinum toxin, and the idea of the therapeutic use of the toxin. Mov Dis. 2004;19(Suppl 8):S2–6.CrossRefGoogle Scholar
  15. 15.
    Nigam PK, Nigam A. Botulinum Toxin. Indian J Dermatol. 2010;55(1):8–14.CrossRefGoogle Scholar
  16. 16.
    National Institute for Health and Care Excellence. Botulinum toxin type A for the prevention of headaches in adults with chronic migraine [Guidance]. 2012.Google Scholar
  17. 17.
    National Institute for Health and Care Excellence. Idiopathic overactive bladder syndrome: botulinum toxin A [Guidance]. 2012.Google Scholar
  18. 18.
    U.S. Food and Drug Administration. Information for Healthcare Professionals: OnabotulinumtoxinA (marketed as Botox/Botox Cosmetic), AbobotulinumtoxinA (marketed as Dysport) and RimabotulinumtoxinB (marketed as Myobloc) [Report]. 2013.Google Scholar
  19. 19.
    National Institute for Health and Care Excellence. Endoscopic thoracic sympathectomy for primary hyperhidrosis of the upper limb [Guidance]. 2014.Google Scholar
  20. 20.
    Singh BR. Intimate details of the most poisonous poison. Nat Struct Biol. 2000;7(8):617–9.CrossRefGoogle Scholar
  21. 21.
    Pestronk A. Neuromuscular Disease Center. [Online]. 2014 [cited 2015 April 19. Available from: http://neuromuscular.wustl.edu/nother/bot.htm
  22. 22.
    Morris JL, Jobling P, Gibbins IL. Differential inhibition by botulinum neurotoxin A of cotransmitters released from autonomic vasodilator neurons. Am J Physiol Heart Circu Physiol. 2001;281(5):H2124–32.CrossRefGoogle Scholar
  23. 23.
    Kim YS, Roh TS, Lee WJ, Yoo WM, Tark KC. The effect of botulinum toxin A on skin flap survival in rats. Wound Repair Regen. 2009;17(3):411–7.CrossRefGoogle Scholar
  24. 24.
    Schweizer F, Schweizer R, Zhang S, Kamat P, Contaldo C, Rieben R, et al. Botulinum toxin A and B raise blood flow and increase survival of critically ischemic skin flaps. J Surg Res. 2013;184(2):1205–13.CrossRefGoogle Scholar
  25. 25.
    Kim TK, Oh EJ, Chung JY, Park JW, Cho BC, Chung HY. The effects of botulinum toxin A on the survival of a random cutaneous flap. J Plast Reconstr Aesthet Surg. 2009 July;62(7):906–13.CrossRefGoogle Scholar
  26. 26.
    Park TH, Rah DK, Chong Y, Kim JK. The effects of botulinum toxin a on survival of rat TRAM flap with vertical midline scar. Ann Plast Surg. 2015 January;74(1):100–6.CrossRefGoogle Scholar
  27. 27.
    Uchiyama A, Yamada K, Perera B, Ogino S, Yokoyama Y, Takeuchi Y, et al. Protective effect of botulinum toxin A after cutaneous ischemia-reperfusion injury. Sci Rep. 2015;13(5):9072 (1–6).Google Scholar
  28. 28.
    Neumeister MW, Chambers CB, Herron MS, Webb K, Wietfeldt J, Gillespie JN, et al. Botox therapy for ischemic digits. Plast Reconstr Surg. 2009;124(1):191–201.CrossRefGoogle Scholar
  29. 29.
    Sycha T, Graninger M, Auff E, Schnider P. Botulinum toxin in the treatment of Raynaud's phenomenon: a pilot study. Eur J Clin Investig. 2004;34(4):312–3.CrossRefGoogle Scholar
  30. 30.
    Van Beek AL, Lim PK, Gear AJL, Pritzker MR. Management of vasospastic disorders with botulinum toxin A. Plast Reconstr Surg. 2007 January;119(1):217–26.CrossRefGoogle Scholar
  31. 31.
    Fregene A, Ditmars D, Siddiqui A. Botulinum toxin type A: a treatment option for digital ischemia in patients with Raynaud's phenomenon. J Hand Surg. 2009;34(3):446–52.CrossRefGoogle Scholar
  32. 32.
    Smith L, Polsky D, Franks AG. Botulinum toxin-A for the treatment of Raynaud syndrome. Arch Dermatol. 2012;148(4):426–8.CrossRefGoogle Scholar
  33. 33.
    Neumeister MW. Botulinum toxin type A in the treatment of Raynaud's phenomenon. J Hand Surg. 2010;35(12):2085–92.CrossRefGoogle Scholar
  34. 34.
    Serri J, Legre R, Veit V, Guardia C, Gay AM. Botulinum toxin type A contribution in the treatment of Raynaud's phenomenon due to systemic sclerosis. Ann Chir Plast Esthet. 2013;58(6):658–62.CrossRefGoogle Scholar
  35. 35.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press; 2000.Google Scholar
  36. 36.
    Singh U, Jialal I. Anti-inflammatory effects of alpha-tocopherol. Ann N Y Acad Sci. 2004;1031:195–203.CrossRefGoogle Scholar
  37. 37.
    Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress and inflammation. Annu Rev Nutr. 2005;25:151–74.CrossRefGoogle Scholar
  38. 38.
    Burton GW, Traber MG. Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr. 1990;10:357–82.CrossRefGoogle Scholar
  39. 39.
    Freedman JE, Keaney JFJ. Vitamin E inhibition of platelet aggregation is independent of antioxidant activity. J Nutr. 2001;131(2):374–77S.CrossRefGoogle Scholar
  40. 40.
    Wu D, Liu L, Meydani M, Meydani SN. Vitamin E increases production of vasodilator prostanoids in human aortic endothelial cells through opposing effects on cyclooxygenase-2 and phospholipase A2. J Nutr. 2005;135(8):1847–53.CrossRefGoogle Scholar
  41. 41.
    Lundberg AC, Akesson A, Akesson B. Dietary intake and nutritional status in patients with systemic sclerosis. Ann Rheum Dis. 1992;51(10):1143–8.CrossRefGoogle Scholar
  42. 42.
    Burgess JF, Pritchard JE. Tocopherol (vitamin E) therapy in sclerosis of the legs with ulcer. Can Med Assoc J. 1948;59(3):242–7.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Panin G, Strumia R, Ursini F. Topical alpha-tocopherol acetate in the bulk phase. Eight years of experience in skin treatment. Ann N Y Acad Sci. 2006;1031(1):443–7.CrossRefGoogle Scholar
  44. 44.
    Fiori G, Galluccio F, Braschi F, Amanzi L, Miniati I, Conforti ML, et al. Vitamin E gel reduces time of healing of digital ulcers in systemic sclerosis. Clin Exp Rheumatol. 2009;27:S51–4.Google Scholar
  45. 45.
    Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol. 1999;34(6):879–86.CrossRefGoogle Scholar
  46. 46.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford, Oxford University Press; 2000.Google Scholar
  47. 47.
    Cotton SA, Herrick AL, Jayson MIV, Freemont AJ. Endothelial expression of nitric oxide synthases and nitrotyrosine in systemic sclerosis skin. J Pathol. 1999;189(2):273–8.CrossRefGoogle Scholar
  48. 48.
    Andersen GN, Caidahl K, Kazzam E, Petersson AS, Waldenstrom A, Mincheva-Nilsson L, et al. Correlation between increased nitric oxide production and markers of endothelial activation in systemic sclerosis: findings with the soluble adhesion molecules E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. Arthritis Rheum. 2000;43(5):1085–93.CrossRefGoogle Scholar
  49. 49.
    Yamamoto T, Katayama I, Nishioka K. Nitric oxide production and inducible nitric oxide synthase expression in systemic sclerosis. J Rheumatol. 1998;25(2):314–7.PubMedGoogle Scholar
  50. 50.
    Takagi K, Kawaguchi Y, Hara M, Sugiura T, Hargai M, Kamatani N. Serum nitric oxide (NO) levels in systemic sclerosis patients: correlation between NO levels and clinical features. Clin Exp Immunol. 2003;134(3):538–44.CrossRefGoogle Scholar
  51. 51.
    Sud A, Khullar M, Wanchu A, Bambery P. Increased nitric oxide production in patients with systemic sclerosis. Nitric Oxide. 2000;4(6):615–9.CrossRefGoogle Scholar
  52. 52.
    Matucci-Cerinic M, Kahaleh MB. Beauty and the beast. The nitric oxide paradox in systemic sclerosis. Rheumatology (Oxford). 2002;41(8):843–7.CrossRefGoogle Scholar
  53. 53.
    Allanore Y, Borderie D, Hilliquin P, Hernvann A, Levacher M, Lemarechal H, et al. Low levels of nitric oxide (NO) in systemic sclerosis: inducible NO synthase production is decreased in cultured peripheral blood monocyte/macrophage cells. Rheumatology (Oxford). 2001;40(10):1089–96.CrossRefGoogle Scholar
  54. 54.
    Tucker AT, Pearson RM, Cooke ED, Benjamin N. Effect of nitric-oxide-generating system on microcirculatory blood flow in skin of patients with severe Raynaud’s syndrome: a randomised trial. Lancet. 1999;354(9191):1670–5.CrossRefGoogle Scholar
  55. 55.
    Chung L, Shapiro L, Fiorentino D, Baron M, Shanahan J, Sule S, et al. MQX-503, a novel formulation of nitroglycerin, improves the severity of Raynaud’s phenomenon. Arthritis Rheum. 2009;60(3):870–7.CrossRefGoogle Scholar
  56. 56.
    Hummers LK, Dugowson CE, Dechow FJ, Wise RA, Gregory J, Michalek J, et al. A multi-centre, blinded, randomised, placebo-controlled, laboratory-based study of MQX-503, a novel topical gel formulation of nitroglycerine, in patients with Raynaud phenomenon. Ann Rheum Dis. 2013 December;72(12):1962–7.CrossRefGoogle Scholar
  57. 57.
    Anderson ME, Moore TL, Hollis S, Jayson MIV, King TA, Herrick AL. Digital vascular response to topical glyceryl trinitrate, as measured by laser Doppler imaging, in primary Raynaud’s phenomenon. Rheumatology (Oxford). 2002;41(3):324–8.CrossRefGoogle Scholar
  58. 58.
    Pfizenmaier DH, Kavros SJ, Liedl DA, Cooper LT. Use of intermittent pneumatic compression for treatment of upper extremity vascular ulcers. Angiology. 2005;56(4):417–22.CrossRefGoogle Scholar
  59. 59.
    Rosales-Velderrain A, Padilla M, Choe CH, Hargens AR. Increased microvascular flow and foot sensation with mild continuous external compression. Physiol Rep. 2013;1(7):e00157.CrossRefGoogle Scholar
  60. 60.
    Labropoulos N, Leon LR, Bhatti A, Melton S, Kang SS, Mansou AM, et al. Hemodynamic effects of intermittent pneumatic compression in patients with critical limb ischemia. J Vasc Surg. 2005;42(4):710–6.CrossRefGoogle Scholar
  61. 61.
    Delis KT. The case for intermittent pneumatic compression of the lower extremity as a novel treatment in arterial claudication. Perspect Vasc Surg Endovasc Ther. 2005;17(1):29–42.CrossRefGoogle Scholar
  62. 62.
    Chang ST, Hsu JT, Chu CM, Pan KL, Jang SJ, Lin PC, et al. Using intermittent pneumatic compression therapy to improve quality of life for symptomatic patients with Infrapopliteal diffuse peripheral obstructive disease. Circ J. 2012;76(4):971–6.CrossRefGoogle Scholar
  63. 63.
    Sultan S, Hamada N, Soylu E, Fahy A, Hynes N, Tawfick W. Sequential compression biomechanical device in patients with critical limb ischemia and nonreconstructible peripheral vascular disease. J Vasc Surg. 2011;54(2):440–6.CrossRefGoogle Scholar
  64. 64.
    van Bemmelen PS, Gitlitz DB, Faruqi RM, Weiss-Olmanni J, Brunetti VA, Giron F, et al. Limb salvage using high-pressure intermittent compression arterial assist device in cases unsuitable for surgical revascularization. Arch Surg (Chicago III: 1960). 2001;136(11):1280–5.CrossRefGoogle Scholar
  65. 65.
    Kavros SJ, Delis KT, Turner NS, Voll AE, Liedl DA, Gloviczki P, et al. Improving limb salvage in critical ischemia with intermittent pneumatic compression: a controlled study with 18-month follow-up. J Vasc Surg. 2008;47(3):543–9.CrossRefGoogle Scholar
  66. 66.
    Filho JP, Sampaio-Barros PD, Parente JB, Menezes FH, Potério GB, Samara AM, et al. Rhythmic external compression of the limbs: a method for healing cutaneous ulcers in systemic sclerosis. J Rheumatol. 1998;25(8):1540–3.PubMedGoogle Scholar
  67. 67.
    National Institute for Health and Care Excellence. NICE National Institute for Health and Care Excellence. [Online]. 2010 [cited 2015 May 3. Available from: https://www.nice.org.uk/guidance/cg92/chapter/Key-priorities-for-implementation#reducing-the-risk-of-vte
  68. 68.
    Miller D, Smith N, Bailey M, Czarnota G, Hynynen K, Makin I, et al. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med. 2012;31(4):623–34.CrossRefGoogle Scholar
  69. 69.
    Gibbons GW, Orgill DP, Serena TE, Novoung A, O'Connell JB, Li WW, et al. A prospective, randomized, controlled trial comparing the effects of noncontact, low-frequency ultrasound to standard care in healing venous leg ulcers. Ostomy Wound management. 2015;61(1):16–29.Google Scholar
  70. 70.
    Kavros SJ, Liedl DA, Boon AJ, Miller JL, Hobbs JA, Andrews KL. Expedited wound healing with noncontact, low-frequency ultrasound therapy in chronic wounds: a retrospective analysis. Advances in skin and wound care. 2008;21(9):416–23.CrossRefGoogle Scholar
  71. 71.
    Lai J, Pittelkow MR. Physiological effects of ultrasound mist on fibroblasts. Int J Dermatol. 2007;46(6):587–93.CrossRefGoogle Scholar
  72. 72.
    Thawer HA, Houghton PE. Effects of ultrasound delivered through a mist of saline to wounds in mice with diabetes mellitus. J Wound Care. 2004;13(5):171–6.CrossRefGoogle Scholar
  73. 73.
    Stanisic MM, Provo BJ, Larson DL, Kloth LC. Wound Debridement with 25 kHz Ultrasound. Advances in Skin and wound care. 2005;18(9):484–90.CrossRefGoogle Scholar
  74. 74.
    Maan ZN, Januszyk M, Rennert RC, Duscher D, Rodrigues M, Fujiwara T, et al. Expedited Wound Healing with Noncontact, Low-Frequency Ultrasound Therapy in Chronic Wounds: A Retrospective Analysis. Plastic and reconstructive surgery. 2014;134(3):402e–11e.CrossRefGoogle Scholar
  75. 75.
    Department of Health and Human Services. Food and Drug Administration. MIST Therapy System 510(K) Premarket Notification; David L. Bremseth, Pharm D. Vice President, Clinical and Regulatory affairs. Celleration, Inc. 10250 Valley View Road, Suite 137, Eden Prairie, Minnesota 55344. 2005 May 17.Google Scholar
  76. 76.
    Fleming CP. Sound evidence: acoustic pressure wound therapy in the treatment of a vasculopathy-associated digital ulcer: a case study. Ostomy Wound management. 2008;54(4):62–5.Google Scholar
  77. 77.
    National Institute for Health and Care Excellence. NICE; National Institute for Health and Care Excellence. [Online].; 2013 [cited 2015 May 5. Available from: http://cks.nice.org.uk/hyperhidrosis" \l "!scenario.
  78. 78.
    Anderson ME, Hollis S, Moore T, Jayson MIV, Herrick AL. Non-invasive assessment of vascular reactivity in forearm skin of patients with primary Raynaud's phenomenon and systemic sclerosis. Br J Rheumatol. 1996;35:1281–8.CrossRefGoogle Scholar
  79. 79.
    Anderson ME, Campbell F, Hollis S, Moore T, MIV J, Herrick AL. Non-invasive assessment of digital vascular reactivity in patients with primary Raynaud's phenomenon and systemic sclerosis. Clinical and experimental rheumatology. 1999;17(1):49–54.PubMedGoogle Scholar
  80. 80.
    Murray AK, Herrick AL, Gorodkin RE, Moore TL, King TA. Possible therapeutic use of vasodilator iontophoresis. Microvasc Res. 2005 January;69(1–2):89–94.CrossRefGoogle Scholar
  81. 81.
    Murray AK, Moore TL, King TA, Herrick AL. Vasodilator iontophoresis a possible new therapy for digital ischaemia in systemic sclerosis? Rheumatology (Oxford). 2008 January;47(1):76–9.CrossRefGoogle Scholar
  82. 82.
    Gottrup F, Jorgensen B. Maggot Debridement: An Alternative Method for Debridement. Eplasty Journal of Plastic surgery. 2011;11(e33):290–302.Google Scholar
  83. 83.
    Whitaker IS, Welck M, Whitaker MJ, Conroy FJ. From the bible to biosurgery: Lucilia sericata--plastic surgeon's assistant in the 21st century. Plast Reconstr Surg. 2006;117(5):1670–1.CrossRefGoogle Scholar
  84. 84.
    Sherman RA. Mechanisms of maggot-induced wound healing: what do we know, and where do we go from Here? Evid Based Complement Alternat Med. 2014;2014:1–13.CrossRefGoogle Scholar
  85. 85.
    Sun X, Jiang K, Chen J, Wu L, Lu H, Wang A, et al. A systematic review of maggot debridement therapy for chronically infected wounds and ulcers. Int J Infect Dis. 2014;25:32–7.CrossRefGoogle Scholar
  86. 86.
    Wu T, Chu H, Tu W, Song M, Chen D, Yuan J, et al. Dissection of the mechanism of traditional Chinese medical prescription-Yiqihuoxue formula as an effective anti-fibrotic treatment for systemic sclerosis. BMC Complement Altern Med. 2014;14(224)Google Scholar
  87. 87.
    University of Maryland Medical Center. University of Maryland Medical Center. [Online]. 2013 [cited 2015 May 4]. Available from: http://umm.edu/health/medical/altmed/herb/astragalus
  88. 88.
    Wang BQ. Salvia Miltiorrhiza: chemical and pharmacological review of a medicinal plant. Journal of Medicinal plants research. 2010;4(25):2813–20.Google Scholar
  89. 89.
    Sonnylal S, Denton CP, Zheng B, Keene DR, He R, Adams HP, et al. Postnatal induction of transforming growth factor beta signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum. 2007;56(1):334–44.CrossRefGoogle Scholar
  90. 90.
    Kawakami T, Ihn H, Xu W, Smith E, LeRoy C, Trojanowska M. Increased expression of TGF-beta receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-beta signaling to scleroderma phenotype. J Invest Dermatol. 1998;110(1):47–51.CrossRefGoogle Scholar
  91. 91.
    Germano MP, De Pasquale R, D'Angelo V, Catania S, Silvari V, Costa C. Evaluation of extracts and isolated fraction from Capparis spinosa L. buds as an antioxidant source. J Agric Food Chem. 2002;50(5):1168–71.CrossRefGoogle Scholar
  92. 92.
    Yl C, Li X, Zheng M. Capparis spinosa protects against oxidative stress in systemic sclerosis dermal fibroblasts. Arch Dermatol Res. 2010;302(5):349–55.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nabil George
    • 1
  • Todd Kanzara
    • 2
  • Kuntal Chakravarty
    • 3
  1. 1.Medicine/Surgery, North Middlesex University HospitalLondonUK
  2. 2.Otolaryngology, Southend HospitalSouthendUK
  3. 3.Rheumatology, Royal Free Hospital NHS Foundation TrustLondonUK

Personalised recommendations