Low-Resistivity Structures in the Seismically Active Lithosphere Zones and Observations of Electromagnetic Signals of Seismic Origin

  • Oleg Novik
  • Feodor Smirnov
  • Maxim Volgin


In this chapter, we cite the published results of the field investigations of other authors regarding the characteristics of (a) low-resistivity (i.e., low-ohmic) structures in seismically active lithosphere zones and (b) electromagnetic (EM) signals of seismic origin (seismo-EM signals). The typicality of similar structures in seismically active zones, according to numerous expeditions and the geological theory of ore genesis, is discussed as well.

These data may be considered as the geological and geophysical basis of the theory of seismo-EM interaction and earthquake (EQ) precursory signals (also referred to as precursors), which are discussed further in the subsequent chapters. Precursors are understood here as the measurable signals before an earthquake, i.e., without any estimations (these have been doubtful, recently) of their prognostic value.


Earthquake Ore genesis Low-resistivity structure Precursor EM signals 


  1. Arora, B. R., & Mahashabde, M. V. (1987). A transverse conductive structure in the Northwest Himalaya. Physics of the Earth and Planetary Interiors, 45, 119–127.CrossRefGoogle Scholar
  2. Belov, S. V., Migunov, N. I., & Sobolev, G. A. (1974). Magnetic effects of strong earthquakes on Kamchatka. Magnetism and Aeronomy, 14, 380–382. (In Russian: Белов С.В., Мигунов Н.И., Соболев Г.А. Магнитные эффекты сильных землетрясений на Камчатке. Магнетизм и аэрономия. 1974, 14, c. 380–382).Google Scholar
  3. Bragin, V. D., Volykhin, A. M., Trapesnikov, Y. A., Koshkin, N. A., & Batalev, V. Y. (1993). Depth structure of seismicity-dangerous zones of the Tien-Shan based on electromagnetic sounding data. Journal of Earthquake Prediction Research, 2, 329–338.Google Scholar
  4. Chamalaun, F. H., & Barton, C. E. (1993). The large scale electrical conductivity structure of Australia. Journal of Geomagnetism and Geoelectricity, 45, 1209–1212.CrossRefGoogle Scholar
  5. Dea, J. Y., Hansen, P. M., & Boerner, W. M. (1994). Direct observation of real time generation of electromagnetic signals and a generalized model for earthquake precursor emission. In M. Hayakawa & Y. Fujinawa (Eds.), Electromagnetic phenomena related to earthquake prediction (pp. 439–449). Tokyo: Terra Scientific (Terrapub).Google Scholar
  6. Eberhart-Phillips, D., Labson, V. F., Stanley, W. D., Michael, A. J., & Rodriguez, B. D. (1990). Preliminary velocity and resistivity models of the Loma Prieta earthquake region. Geophysical Research Letters, 17, 1235–1238.CrossRefGoogle Scholar
  7. Fuginawa, Y., Takahashi, K., Matsumoto, T., Iitaka, H., Yamane, S., Nakayama, T., et al. (2000). Electromagnetic field anomaly associated with the 1998 seismic swarms in central Japan. Physics and Chemistry of the Earth, Part A, 25, 247–253.CrossRefGoogle Scholar
  8. Gohberg, M. B., et al. (1991). Electromagnetic field of an earthquake’s focus. Proceedings of RAS, 308(1), 62–65. (In Russian: Гохберг М.Б., Крылов С.М., Левшенко В.Т. Электромагнитное поле очага землетрясений. Доклады АН СССР. 1991, 308, № 1, c. 62–65).Google Scholar
  9. Gough, D. I. (1974). Electrical conductivity under western North America in relation to heat flow, seismology and structure. Journal of Geomagnetism and Geoelectricity, 26, 105–123.CrossRefGoogle Scholar
  10. Gueguen, Y., & Palciauscas, V. (1994). Introduction to physics of rocks. Princeton: Princeton University Press.Google Scholar
  11. Guodong, L. (1991). MT studies on the conductivity of the crust and upper mantle in China. Beijing: Annual Review in Geophysics Seismological Press.Google Scholar
  12. Honkura, Y. (1974). Electrical conductivity anomalies beneath the Japan arc. Journal of Geomagnetism and Geoelectricity, 26, 147–171.CrossRefGoogle Scholar
  13. Kak, A. G., & Slaney, M. (1987). Principles of computerized tomographic imaging. New Jersey: IEEE.Google Scholar
  14. Kapio, J., & Somersalo, E. (2010). Statistical and computational inverse problems. New York: Springer.Google Scholar
  15. Kissin, I. G., Belikov, V. M., & Ishankuliev, G. A. (1996). Short-term groundwater level variations in a seismic region as an indicator of the geodynamic regime. Tectonophysics, 265(3–4), 313–326.CrossRefGoogle Scholar
  16. Knopov, P., & Kasitskaya, E. (2002). Empirical estimates in stochastic optimization and identification. New York: Springer.CrossRefGoogle Scholar
  17. Korovkin, N. V., Chechurin, V. L., & Hayakawa, M. (2007). Inverse problems in electric circuits and electromagnetics. New York: Springer.Google Scholar
  18. Kryzhanovsky, B., et al. (Eds.). (2017). Advances in neural computations, machine learning, and cognitive research (p. 199). New York: Springer.Google Scholar
  19. Lilley, F. E. M. (1975). Electrical conductivity anomalies and continental seismicity in Australia. Nature, 257, 381–382.CrossRefGoogle Scholar
  20. Lilley, F. E. M., & Smylie, D. E. (1968). Elastic wave motion and a nonuniform magnetic field in electrical conductors. Journal of Geophysical Research., 73(20), 6527–6533.CrossRefGoogle Scholar
  21. Lilley, F. E. M., Singh, B. P., Аrоrа, B. R., Srivastava, B. I., Plasad, S. N., & Sloan, M. N. (1981). A magnetometer array study in northwest India. Physics of the Earth and Planetary Interiors, 25, 232–240.CrossRefGoogle Scholar
  22. Menendez, R. G. P., Andino, S. L. G., Morand, S., Michel, C. M., & Landis, T. (2000). Imaging the electrical activity of the brain: ELECTRA. Human Brain Mapping, 9, 1–12.CrossRefGoogle Scholar
  23. Menke, W. (2018). Geophysical data analysis (Discrete inverse theory) (4th ed.). Amsterdam: Elsevier.Google Scholar
  24. Nabighian, M. N., & Macnae, J. C. (2005). Electric and EM methods, 1980–2005. The Leading Edge, 24, 542–545.CrossRefGoogle Scholar
  25. Orihara, Y., Kamigawa, M., & Nagao, T. (2014). Preseismic changes of the level and temperature of confined groundwater related to the 2011 Tohoku earthquake. Scientific Reports, 4, 6907.CrossRefGoogle Scholar
  26. Park, S. K., & Fitterman, D. V. (1990). Sensitivity of the telluric monitoring array in Parkfield, California, to changes of resistivity. Journal of Geophysical Research, 95(15), 557–571.Google Scholar
  27. Parkinson, W. D., Hermanlto, R., Sayers, J., Bindoff, N. L., Dosso, H. V., & Nienaber, W. (1988). The Tamar conductivity anomaly. Physics of the Earth Planetary Interiors, 52, 8–22.CrossRefGoogle Scholar
  28. Raknes, E. B., & Arnsten, B. (2017). Challenges and solutions for performing 3D time-domain elastic full-waveform inversion. The Leading Edge, 36(1), 88–93. Accessed 10 January 2019.CrossRefGoogle Scholar
  29. Sarkar, S., Gwal, A. K., & Parrot, M. (2007). Ionospheric variations observed by the Demeter satellite in the mid-latitude region during strong earthquakes. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 1524–1540.CrossRefGoogle Scholar
  30. Shirong., M. (1992). Progress in earthquake prediction in China during 80’s. Journal of Earthquake Prediction Research, 1, 43–57.Google Scholar
  31. Sochelnikov, V. V. (2006). The high-resolution electro-prospecting. (In Russian: Высокоразрешающая электроразведка. Морская Государственная Академия имени адмирала Ф.Ф.Ушакова).Google Scholar
  32. Special Section on Inverse Problems in Geosciences. (2013). Inverse Problems in Science and Engineering 21(3), pp. 355–561.CrossRefGoogle Scholar
  33. Strakhov, V. N. (2008). The list of publications. In: My life in science (Vol. 1, pp. 19–67). Moscow: Schmidt Institute of Physics of the Earth, RAS. (In Russian: Список публикаций. Моя жизнь в науке. Т. 1. ИФЗ РАН. С. 19–67).Google Scholar
  34. Takahashi K., Fujinawa Y., Matsumoto T., Nakayama T., Sawada T., Sakai H., et al. (2000). An anomalous electric field variation associated with the seismic swarm (1)-underground electric observation at Hodaka station. Technical note of the National Research Institute for Earth Science and Disaster Prevention, No. 204, pp. 1–204.Google Scholar
  35. Tarantola, A. (1987). Inverse problem theory: Methods for data fitting and model parameter estimation (p. 630). Amsterdam: Elsevier.Google Scholar
  36. Vozoff, K. (1984). Model study for the proposed magnetotelluric (MT) traverse in North India. Tectonophysics, 105, 399–411.CrossRefGoogle Scholar
  37. Wikipedia Contributors. (2018). Craton. Wikipedia, the free Encyclopedia. Accessed October 29, 2018, from
  38. Zubkov, S. I. (1992). Thermal precursors of earthquakes. Physics of the Earth, 8, 72–82. (In Russian: Зубков С.И. Термические предвестники землетрясений. Физика Земли. 1992, № 8, c. 72–82).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Oleg Novik
    • 1
  • Feodor Smirnov
    • 1
  • Maxim Volgin
    • 1
  1. 1.IZMIRAN of the Russian Academy of SciencesMoscowRussia

Personalised recommendations