Advertisement

Logical Nihilism

  • Aaron J. CotnoirEmail author
Chapter
Part of the Palgrave Innovations in Philosophy book series (PIIP)

Abstract

Much of the discussion in the philosophy of logic over the last decade has been devoted to the debate between logical monism and logical pluralism. But logical nihilism hasn’t been given nearly as much attention, even though the view has historical roots and is philosophically defensible. I present and defend a number of arguments in favor of logical nihilism. These arguments are grouped into two main families: arguments from diversity (§2) and arguments from expressive limitations (§3). These arguments are often simple syllogisms pointing to fundamental differences between natural languages and formal consequence relations. Many of the arguments involve familiar problems in the philosophy of logic. The arguments, taken individually, are interesting in their own right; they each highlight an important way in which the formal methods of logic can be seen to be inadequate to modeling natural language inference. But the arguments taken jointly are more significant; by presenting all the arguments together, we can build something of a cumulative case for logical nihilism. Of course, if any of these arguments are sound, then logical nihilism is correct. But the arguments reinforce one another, such that logical nihilism presents us with a unified view across a broad range of issues in philosophy of logic. I conclude (§4) by considering related philosophical issues and sketching a general outlook on logic and formal methods that is nihilist-friendly.

Keywords

Logical nihilism Logical monism Logical pluralism Logical relativism Arguments from diversity Arguments from expressive limitations Necessity Cases Topic neutrality Semantic closure Semantic paradoxes Unrestricted quantification Natural language inference Formal logic 

References

  1. Bacon, A. 2015. Can the Classical Logician Avoid the Revenge Paradoxes? Philosophical Review 124 (3): 299–352.CrossRefGoogle Scholar
  2. Beall, J. 2007. Prolegomena to Future Revenge. In Revenge of the Liar, ed. J. Beall, 1–30. Oxford: Oxford University Press.Google Scholar
  3. ———. 2015. Trivializing Sentences and the Promise of Semantic Completeness. Analysis 75: 573–584.CrossRefGoogle Scholar
  4. Beall, J., and J. Murzi. 2013. Two Flavors of Curry Paradox. Journal of Philosophy 110: 143–165.CrossRefGoogle Scholar
  5. Beall, J., and G. Restall. 2000. Logical Pluralism. Australasian Journal of Philosophy 78 (4): 475–493.CrossRefGoogle Scholar
  6. ———. 2006. Logical Pluralism. Oxford: Oxford University Press.Google Scholar
  7. Beall, J., R.T. Brady, A.P. Hazen, G. Priest, and G. Restall. 2006. Relevant Restricted Quantification. Journal of Philosophical Logic 35 (6): 587–598.CrossRefGoogle Scholar
  8. Boolos, G. 1985. Nominalist Platonism. The Philosophical Review 94: 327–344.CrossRefGoogle Scholar
  9. Brady, R. 2006. Universal Logic. Stanford: CSLI Publications.Google Scholar
  10. Bueno, O., and M. Colyvan. 2004. Logical Non-apriorism and the Law of Non-contradiction. In The Law of Non-contradiction: New Philosophical Essays, ed. Graham Priest, Jc Beall, and Bradley P. Armour-Garb, 156–175. Oxford: Oxford University Press.Google Scholar
  11. Bueno, O., and S.A. Shalkowski. 2009. Modalism and Logical Pluralism. Mind 118 (470): 295–321.CrossRefGoogle Scholar
  12. Chihara, C. 1979. The Semantic Paradoxes: A Diagnostic Investigation. Philosophical Review 88: 590–618.CrossRefGoogle Scholar
  13. Clarke, S.G. 1987. Anti-theory in Ethics. American Philosophical Quarterly 24 (3): 237–244.Google Scholar
  14. Cook, R.T. 2002. Vagueness and Mathematical Precision. Mind 111: 227–247.CrossRefGoogle Scholar
  15. ———. 2010. Let a Thousand Flowers Bloom: A Tour of Logical Pluralism. Philosophy Compass 5 (6): 492–504.CrossRefGoogle Scholar
  16. ———. 2014. There Is No Paradox of Logical Validity. Logica Universalis 8 (3–4): 447–467.CrossRefGoogle Scholar
  17. Cotnoir, A.J. 2013. Validity for Strong Pluralists. Philosophy and Phenomenological Research 86 (3): 563–579.CrossRefGoogle Scholar
  18. Dancy, J. 1983. Ethical Particularism and Morally Relevant Properties. Mind 92 (368): 530–547.CrossRefGoogle Scholar
  19. Dummett, M. 1975. Wang’s Paradox. Synthese 30 (3–4): 301–324.CrossRefGoogle Scholar
  20. Dutilh-Novaes, C. 2012. Reassessing Logical Hylomorphism and the Demarcation of Logical Constants. Synthese 185 (3): 387–410.CrossRefGoogle Scholar
  21. Eklund, M. 2002. Inconsistent Languages. Philosophy and Phenomenological Research 64 (2): 251–275.CrossRefGoogle Scholar
  22. ———. 2012. The Multitude View on Logic. In New Waves in the Philosophy of Logic, ed. G. Restall and G. Russell, 217–240. Palgrave Macmillan.Google Scholar
  23. Estrada-González, L. 2011. On the Meaning of Connectives (Apropos of a Non-necessitarianist Challenge). Logica Universalis 5 (1): 115–126.CrossRefGoogle Scholar
  24. Etchemendy, J. 1990. The Concept of Logical Consequence. Cambridge, MA: Harvard University Press.Google Scholar
  25. Field, H. 2008. Saving Truth from Paradox. Oxford: Oxford University Press.CrossRefGoogle Scholar
  26. ———. 2009. Pluralism in Logic. Review of Symbolic Logic 2 (2): 342–359.CrossRefGoogle Scholar
  27. Florio, S. 2014. Unrestricted Quantification. Philosophy Compass 9 (7): 441–454.CrossRefGoogle Scholar
  28. Forster, T.M. 1992. Set Theory with a Universal Set. Oxford: Oxford University Press.Google Scholar
  29. Frege, G. 2002. Begriffsschrift, a Formula Language, Modeled upon that of Arithmetic, for Pure Thought. In From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, ed. J. Van Heijenoort, 1–82. Cambridge, MA: Harvard University Press.Google Scholar
  30. Glanzberg, M. 2015. Logical Consequence and Natural Language. In Foundations of Logical Consequence, ed. C.R. Caret and O.T. Hjortland, 71–120. Oxford: Oxford University Press.CrossRefGoogle Scholar
  31. Grim, P. 1991. The Incomplete Universe: Totality, Knowledge, and Truth. Cambridge, MA: MIT Press.Google Scholar
  32. Haack, S. 1978. Philosophy of Logics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Hofweber, T. 2007. Validity, Paradox, and the Ideal of Deductive Logic. In Revenge of the Liar, ed. J. Beall, 145–158. Oxford: Oxford University Press.Google Scholar
  34. Jané, I. 1993. A Critical Appraisal of Second-Order Logic. History and Philosophy of Logic 14: 67–86.CrossRefGoogle Scholar
  35. Lavine, S. 2006. Something About Everything: Universal Quantification in the Universal Sense of Universal Quantification. In Absolute Generality, ed. A. Rayo and G. Uzquiano, 98–148. Oxford: Oxford University Press.Google Scholar
  36. Lewis, D.K. 1991. Parts of Classes. Oxford: Blackwell.Google Scholar
  37. Linnebo, Ø. 2003. Plural Quantification Exposed. Noûs 37 (1): 71–92.CrossRefGoogle Scholar
  38. ———. 2006. Sets, Properties, Unrestricted Quantification. In Absolute Generality, ed. A. Rayo and G. Uzquiano, 149–178. Oxford: Oxford University Press.Google Scholar
  39. ———. 2010. Pluralities and Sets. Journal of Philosophy 107 (3): 144–164.CrossRefGoogle Scholar
  40. Linnebo, Ø., and A. Rayo. 2012. Hierarchies Ontological and Ideological. Mind 121 (482): 269–308.CrossRefGoogle Scholar
  41. Ludwig, K. 2002. What Is the Role of a Truth Theory in a Meaning Theory. In Meaning and Truth: Investigations in Philosophical Semantics, ed. O. Campbell, D. Shier, and J.K. Campbell. New York: Seven Bridges Press.Google Scholar
  42. Ludwig, K., and G. Ray. 2002. Vagueness and the Sorites Paradox. Philosophical Perspectives 16: 419–461.Google Scholar
  43. Lynch, M.P. 2008. Alethic Pluralism, Logical Consequence, and the Universality of Reason. Midwest Studies in Philosophy 32 (1): 122–140.CrossRefGoogle Scholar
  44. ———. 2009. Truth as One and Many. Oxford: Oxford University Press.CrossRefGoogle Scholar
  45. MacFarlane, J.G. 2002. What Does It Mean to Say that Logic Is Formal? PhD thesis, Citeseer.Google Scholar
  46. Mackie, J.L. 1977. Ethics: Inventing Right and Wrong. New York: Pelican Books.Google Scholar
  47. McGee, V. 2003. Universal Universal Quantification. In Liars and Heaps, ed. M. Glanzberg and J. Beall, 357–364. Oxford: Oxford University Press.Google Scholar
  48. ———. 2006. There Is a Rule for Everything. In Absolute Generality, ed. A. Rayo and G. Uzquiano, 179–202. Oxford: Oxford University Press.Google Scholar
  49. Mortensen, C. 1989. Anything is possible. Erkenntnis 30 (3): 319–337.CrossRefGoogle Scholar
  50. Murzi, J. 2014. The Inexpressibility of Validity. Analysis 74 (1): 65–81.CrossRefGoogle Scholar
  51. Patterson, D. 2009. Inconsistency Theories of Semantic Paradox. Philosophy and Phenomenological Research 79 (2): 387–422.CrossRefGoogle Scholar
  52. Pedersen, Nikolaj J.L.L. 2014. Pluralism x 3: Truth, Logic, Metaphysics. Erkenntnis 79 (2): 259–277.CrossRefGoogle Scholar
  53. Priest, G. 1984. Semantic Closure. Studia Logica: An International Journal for Symbolic Logic 43 (1/2): 117–129.CrossRefGoogle Scholar
  54. ———. 2002. Beyond the Limits of Thought. Oxford: Oxford University Press.CrossRefGoogle Scholar
  55. ———. 2006. Doubt Truth to Be a Liar. Oxford: Oxford University Press.Google Scholar
  56. ———. 2007. Review of Absolute Generality. Notre Dame Philosophical Reviews. https://ndpr.nd.edu/news/absolute-generality/.
  57. Quine, W.V.O. 1937. New Foundations for Mathematical Logic. The American Mathematical Monthly 44: 70–80.CrossRefGoogle Scholar
  58. Rayo, A. 2002. Word and Objects. Noûs 36 (3): 436–464.CrossRefGoogle Scholar
  59. ———. 2006. Beyond Plurals. In Absolute Generality, ed. A. Rayo and G. Uzquiano, 220–254. Oxford: Oxford University Press.Google Scholar
  60. Rayo, A., and G. Uzquiano. 2006. Introduction. In Absolute Generality, ed. A. Rayo and G. Uzquiano, 1–19. Oxford: Oxford University Press.Google Scholar
  61. Read, S. 2006. Monism: The One True Logic. In A Logical Approach to Philosophy, ed. D. DeVidi and T. Kenyon, 193–209. New York: Springer.CrossRefGoogle Scholar
  62. Resnik, M.D. 1988. Second-Order Logic Still Wild. The Journal of Philosophy 85 (2): 75–87.CrossRefGoogle Scholar
  63. ———. 2004. Revising Logic. In The Law of Non-contradiction: New Philosophical Essays, ed. Graham Priest, J.C. Beall, and Bradley P. Armour-Garb, 178–193. Oxford: Oxford University Press.CrossRefGoogle Scholar
  64. Russell, G. 2008. One True Logic? Journal of Philosophical Logic 37 (6): 593–611.CrossRefGoogle Scholar
  65. ———. 2017. An Introduction to Logical Nihilism. In Logic, Methodology and Philosophy of Science, ed. P.S. Hannes Leitgeb, Ilkka Niiniluoto, and E. Sober. London: College Publications.Google Scholar
  66. Sagi, G. 2014. Formality in Logic: From Logical Terms to Semantic Constraints. Logique et Analyse 56 (227): 259–276.Google Scholar
  67. Sainsbury, R.M. 1996. Concepts Without Boundaries. In Vagueness: A Reader, ed. R. Keefe and P. Smith, 186–205. Cambridge, MA: MIT Press.Google Scholar
  68. Scharp, K. 2013. Replacing Truth. Oxford: Oxford University Press.CrossRefGoogle Scholar
  69. Shapiro, S. 2006. Vagueness in Context. Oxford: Oxford University Press.CrossRefGoogle Scholar
  70. ———. 2011. Varieties of Pluralism and Relativism for Logic. In A Companion to Relativism, ed. D. Hales, 526–552. Malden: Wiley-Blackwell.CrossRefGoogle Scholar
  71. ———. 2014. Varieties of logic. Oxford: Oxford University Press.CrossRefGoogle Scholar
  72. Sher, G. 1996. Did Tarski Commit ‘tarski’s Fallacy’? Journal of Symbolic Logic 61 (2): 653–686.CrossRefGoogle Scholar
  73. Strawson, P.F. 1950. On Referring. Mind 59 (235): 320–344.CrossRefGoogle Scholar
  74. Studd, J. 2013. The Iterative Conception of Set. Journal of Philosophical Logic 42: 697–725.CrossRefGoogle Scholar
  75. Tarski, A. 1936. On the Concept of Logical Consequence. 2nd ed, 409–420. Indianapolis: Hackett.Google Scholar
  76. ———. 1944. The Semantic Conception of Truth: And the Foundations of Semantics. Philosophy and Phenomenological Research 4 (3): 341–376.CrossRefGoogle Scholar
  77. Tye, M. 1994. Sorites Paradoxes and the Semantics of Vagueness. Philosophical Perspectives 8: 189–206.CrossRefGoogle Scholar
  78. Uzquiano, G. 2006. The Price of Universality. Philosophical Studies 129: 137–169.CrossRefGoogle Scholar
  79. ———. 2009. Quantification Without a Domain. In New Waves in the Philosophy of Mathematics, ed. O. Bueno and Ø. Linnebo, 300–323. London: Palgrave Macmillan.CrossRefGoogle Scholar
  80. Varzi, A.C. 2002. On Logical Relativity. Noûs 36 (1): 197–219.CrossRefGoogle Scholar
  81. Wansing, H., and G. Priest. 2015. External Curries. Journal of Philosophical Logic 44: 453–471.CrossRefGoogle Scholar
  82. Weber, Z. 2010. Transfinite Numbers in Paraconsistent Set Theory. Review of Symbolic Logic 3 (1): 71–92.CrossRefGoogle Scholar
  83. ———. 2012. Transfinite Cardinals in Paraconsistent Set Theory. Review of Symbolic Logic 5 (2): 269–293.CrossRefGoogle Scholar
  84. ———. 2014. Naive Validity. The Philosophical Quarterly 64 (254): 99–114.CrossRefGoogle Scholar
  85. Weir, A. 2006. Is It Too Much to Ask, to Ask for Everything? In Absolute Generality, ed. A. Rayo and G. Uzquiano, 333–368. Oxford: Oxford University Press.Google Scholar
  86. Whittle, B. 2004. Dialetheism, Logical Consequence, and Hierarchy. Analysis 64 (4): 318–326.CrossRefGoogle Scholar
  87. Williamson, T. 2003. Everything. Philosophical Perspectives 17 (1): 415–465.CrossRefGoogle Scholar
  88. ———. 2006. Absolute Identity and Absolute Generality. In Absolute Generality, ed. A. Rayo and G. Uzquiano, 369–390. Oxford: Oxford University Press.Google Scholar
  89. ———. 2017. Semantic Paradoxes and Abductive Methodology. In The Relevance of the Liar, ed. B. Armour-Garb, 325–346. Oxford: Oxford University Press.Google Scholar
  90. Wright, C. 1975. On the Coherence of Vague Predicates. Synthese 30 (3/4): 325–365.CrossRefGoogle Scholar
  91. ———. 2010. The Illusion of Higher-Order Vagueness. In Cuts and Clouds: Vagueness, Its Nature, and Its Logic, ed. R. Dietz and S. Moruzzi. Oxford: Oxford University Press.Google Scholar
  92. Zardini, E. 2010. Truth Preservation in Context and in Its Place. In Insolubles and Consequences, ed. C. Dutilh-Novaes and O. Hjortland, 249–271. London: College Publications.Google Scholar
  93. ———. 2013. Naive Logical Properties and Structural Properties. The Journal of Philosophy 110: 633–644.CrossRefGoogle Scholar
  94. ———. 2014. Context and Consequence: An Intercontextual Substructural Logic. Synthese 191: 3473–3500.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations