A Constraint Programming Approach for Solving Patient Transportation Problems
Abstract
The Patient Transportation Problem (PTP) aims to bring patients to health centers and to take them back home once the care has been delivered. All the requests are known beforehand and a schedule is built the day before its use. It is a variant of the well-known Dial-a-Ride Problem (DARP) but it has nevertheless some characteristics that complicate the decision process. Three levels of decisions are considered: selecting which requests to service, assigning vehicles to requests and routing properly the vehicles. In this paper, we propose a Constraint Programming approach to solve the Patient Transportation Problem. The model is designed to be flexible enough to accommodate new constraints and objective functions. Furthermore, we introduce a generic search strategy to maximize efficiently the number of selected requests. Our results show that the model can solve real life instances and outperforms greedy strategies typically performed by human schedulers.
Notes
Acknowledgments
This research is financed by the Walloon Region (Belgium) as part of PRESupply Project. The problem has been proposed by the CSD, a Belgian non-profit organization operating at Liège.
References
- 1.Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann. Oper. Res. 153, 29–46 (2007)MathSciNetCrossRefGoogle Scholar
- 2.Melachrinoudis, E., Min, H.: A tabu search heuristic for solving the multi-depot, multi-vehicle, double request dial-a-ride problem faced by a healthcare organisation. Int. J. Oper. Res. 10, 214–239 (2011)MathSciNetCrossRefGoogle Scholar
- 3.Liu, R., Xie, X., Augusto, V., Rodriguez, C.: Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care. Eur. J. Oper. Res. 230, 475–486 (2013)MathSciNetCrossRefGoogle Scholar
- 4.Detti, P., Papalini, F., de Lara, G.Z.M.: A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare. Omega 70, 1–14 (2017)CrossRefGoogle Scholar
- 5.Cordeau, J.F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transp. Res. Part B Methodol. 37, 579–594 (2003)CrossRefGoogle Scholar
- 6.Parragh, S.N.: Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride problem. Transp. Res. Part C Emerg. Technol. 19, 912–930 (2011)CrossRefGoogle Scholar
- 7.Parragh, S.N., Cordeau, J.F., Doerner, K.F., Hartl, R.F.: Models and algorithms for the heterogeneous dial-a-ride problem with driver-related constraints. OR Spectr. 34, 593–633 (2012)MathSciNetCrossRefGoogle Scholar
- 8.Psaraftis, H.N.: An exact algorithm for the single vehicle many-to-many dial-a-ride problem with time windows. Transp. Sci. 17, 351–357 (1983)CrossRefGoogle Scholar
- 9.Melachrinoudis, E., Ilhan, A.B., Min, H.: A dial-a-ride problem for client transportation in a health-care organization. Comput. Oper. Res. 34, 742–759 (2007)CrossRefGoogle Scholar
- 10.Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks 30, 105–119 (1997)CrossRefGoogle Scholar
- 11.Parragh, S.N., Doerner, K.F., Hartl, R.F., Gandibleux, X.: A heuristic two-phase solution approach for the multi-objective dial-a-ride problem. Networks 54, 227–242 (2009)MathSciNetCrossRefGoogle Scholar
- 12.Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and delivery problems: a classification scheme and survey. Top 15, 1–31 (2007)MathSciNetCrossRefGoogle Scholar
- 13.Attanasio, A., Cordeau, J.F., Ghiani, G., Laporte, G.: Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput. 30, 377–387 (2004)CrossRefGoogle Scholar
- 14.Berbeglia, G., Pesant, G., Rousseau, L.M.: Checking the feasibility of dial-a-ride instances using constraint programming. Transp. Sci. 45, 399–412 (2011)CrossRefGoogle Scholar
- 15.Berbeglia, G., Cordeau, J.F., Laporte, G.: A hybrid tabu search and constraint programming algorithm for the dynamic dial-a-ride problem. INFORMS J. Comput. 24, 343–355 (2012)MathSciNetCrossRefGoogle Scholar
- 16.Parragh, S.N., Schmid, V.: Hybrid column generation and large neighborhood search for the dial-a-ride problem. Comput. Oper. Res. 40, 490–497 (2013)MathSciNetCrossRefGoogle Scholar
- 17.Jain, S., Van Hentenryck, P.: Large neighborhood search for dial-a-ride problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 400–413. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_31CrossRefGoogle Scholar
- 18.Liu, C., Aleman, D.M., Beck, J.C.: Modelling and solving the senior transportation problem. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 412–428. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_30CrossRefGoogle Scholar
- 19.Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog, (revision a) (2012)Google Scholar
- 20.Gay, S., Hartert, R., Schaus, P.: Simple and scalable time-table filtering for the cumulative constraint. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 149–157. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_11CrossRefzbMATHGoogle Scholar
- 21.Vilím, P.: Timetable edge finding filtering algorithm for discrete cumulative resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 230–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-3_22CrossRefzbMATHGoogle Scholar
- 22.Gay, S., Hartert, R., Schaus, P.: Time-table disjunctive reasoning for the cumulative constraint. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 157–172. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_11CrossRefzbMATHGoogle Scholar
- 23.Ouellet, P., Quimper, C.-G.: Time-table extended-edge-finding for the cumulative constraint. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 562–577. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_42CrossRefGoogle Scholar
- 24.Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator. Constraints 16, 250–282 (2011)MathSciNetCrossRefGoogle Scholar
- 25.Simonis, H., Cornelissens, T.: Modelling producer/consumer constraints. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 449–462. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60299-2_27CrossRefGoogle Scholar
- 26.Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: FLAIRS Conference, pp. 555–560 (2008)Google Scholar
- 27.Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: Reasoning with conditional time-intervals. Part II: an algebraical model for resources. In: FLAIRS Conference, pp. 201–206 (2009)Google Scholar
- 28.Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling. Constraints, 1–41 (2018)Google Scholar
- 29.Dejemeppe, C., Van Cauwelaert, S., Schaus, P.: The unary resource with transition times. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 89–104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_7CrossRefGoogle Scholar
- 30.Ngatchou, P., Zarei, A., El-Sharkawi, A.: Pareto multi objective optimization. In: 2005 Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems, pp. 84–91. IEEE (2005)Google Scholar
- 31.Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict ordering search for scheduling problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 140–148. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_10CrossRefGoogle Scholar
- 32.Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30CrossRefGoogle Scholar
- 33.Lauriere, J.L.: A language and a program for stating and solving combinatorial problems. Artif. Intell. 10, 29–127 (1978)MathSciNetCrossRefGoogle Scholar
- 34.Vilím, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_30CrossRefzbMATHGoogle Scholar
- 35.OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
- 36.Thomas, C., Cappart, Q., Schaus, P., Rousseau, L.M.: CSPLib problem 082: Patient transportation problem. http://www.csplib.org/Problems/prob082
- 37.Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for cumulative scheduling. ICAPS 5, 81–89 (2005)Google Scholar