Advertisement

Towards Semi-Automatic Learning-Based Model Transformation

  • Kiana ZeighamiEmail author
  • Kevin Leo
  • Guido Tack
  • Maria Garcia de la Banda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11008)

Abstract

Recently, [16] showed that the nogoods inferred by learning solvers can be used to improve a problem model, by detecting constraints that can be strengthened and new redundant constraints. However, the detection process was manual and required in-depth knowledge of both the learning solver and the model transformations performed by the compiler. In this paper we provide the first steps towards a (largely) automatic detection process. In particular, we discuss how nogoods can be automatically simplified, connected back to the constraints in the model, and grouped into more general “patterns” for which common facts might be found. These patterns are easier to understand and provide stronger evidence of the importance of particular constraints. We also show how nogoods generated by different search strategies and problem instances can increase our confidence in the usefulness of these patterns. Finally, we identify significant challenges and avenues for future research.

Notes

Acknowledgements

This research was partly sponsored by the Australian Research Council grant DP180100151.

References

  1. 1.
    Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consistency revisited. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 49–58. Springer, Heidelberg (2006).  https://doi.org/10.1007/11941439_9CrossRefGoogle Scholar
  2. 2.
    Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis, The University of Melbourne (2011)Google Scholar
  3. 3.
    Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04244-7_29CrossRefGoogle Scholar
  4. 4.
    Frisch, A., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.: Essence: a constraint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kutsia, T., Levy, J., Villaret, M.: Anti-unification for unranked terms and hedges. J. Autom. Reasoning 52(2), 155–190 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Leo, K., Tack, G.: Multi-pass high-level presolving. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 346–352. AAAI Press (2015). http://ijcai.org/proceedings/2015
  7. 7.
    Leo, K., Tack, G.: Debugging unsatisfiable constraint models. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 77–93. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59776-8_7CrossRefzbMATHGoogle Scholar
  8. 8.
    Mears, C., Garcia de la Banda, M., Wallace, M., Demoen, B.: A method for detecting symmetries in constraint models and its generalisation. Constraints 20(2), 235–273 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference, pp. 530–535. ACM (2001)Google Scholar
  10. 10.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74970-7_38CrossRefGoogle Scholar
  11. 11.
    Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = Lazy Clause Generation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74970-7_39CrossRefGoogle Scholar
  12. 12.
    Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5(1), 153–163 (1970)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode (2016). http://www.gecode.org
  14. 14.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why cumulative decomposition is not as bad as it sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 746–761. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04244-7_58CrossRefGoogle Scholar
  15. 15.
    Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee, J. (ed.) Principles and Practice of Constraint Programming - CP 2011, pp. 69–84. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Shishmarev, M., Mears, C., Tack, G., Garcia de la Banda, M.: Learning from learning solvers. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 455–472. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44953-1_29CrossRefGoogle Scholar
  17. 17.
    Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge 2008–2013. AI Mag. 35(2), 55–60 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kiana Zeighami
    • 1
    Email author
  • Kevin Leo
    • 1
  • Guido Tack
    • 1
    • 2
  • Maria Garcia de la Banda
    • 1
    • 2
  1. 1.Faculty of ITMonash UniversityMelbourneAustralia
  2. 2.Data61/CSIROMelbourneAustralia

Personalised recommendations