Structural Breaks

  • John D. Levendis
Part of the Springer Texts in Business and Economics book series (STBE)


In 1976, Robert Lucas offered one of the strongest criticisms of the Cowles Commission large-scale econometric modeling approach. Lucas critiqued Cowles’ presumption that many economic phenomena are structural. They are not.


  1. Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66, 47–78.CrossRefGoogle Scholar
  2. Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1–22.CrossRefGoogle Scholar
  3. Bai, J., Lumsdaine, R. L., & Stock, J. H. (1998). Testing for and dating common breaks in multivariate time series. The Review of Economic Studies, 65(3), 395–432.CrossRefGoogle Scholar
  4. Banerjee, A., Lumsdaine, R. L., & Stock, J. H. (1992). Recursive and sequential tests of the unit-root and trend-break hypotheses: Theory and international evidence. Journal of Business and Economic Statistics, 10(3), 271–287.Google Scholar
  5. Baum, C. (2015). Zandrews: Stata module to calculate Zivot-Andrews unit root test in presence of structural break. Google Scholar
  6. Byrne, J. P., & Perman, R. (2007). Unit roots and structural breaks: A survey of the literature. In B. B. Rao, (Ed.), Cointegration for the applied economist (2nd ed., pp. 129–142). New York: Palgrave Macmillan.Google Scholar
  7. Campbell, J. Y., & Mankiw, N. G. (1987a). Are output fluctuations transitory? The Quarterly Journal of Economics, 102(4), 857–880.CrossRefGoogle Scholar
  8. Campbell, J. Y., & Mankiw, N. G. (1987b). Permanent and transitory components in macroeconomic fluctuations. The American Economic Review, Papers and Proceedings, 77(2), 111–117.Google Scholar
  9. Chang, S. Y., & Perron, P. (2017). Fractional unit root tests allowing for a structural change in trend under both the null and alternative hypotheses. Econometrics, 5(1), 5.CrossRefGoogle Scholar
  10. Christiano, L. J. (1992). Searching for a break in GNP. Journal of Business and Economic Statistics, 10(3), 237–250.Google Scholar
  11. Clemente, J., Gadea, M. D., Montañés, A., & Reyes, M. (2017). Structural breaks, inflation and interest rates: Evidence from the G7 countries. Econometrics, 5(1), 11.CrossRefGoogle Scholar
  12. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431.CrossRefGoogle Scholar
  13. Enders, W. (2014). Applied econometric time series (3rd edn.). New York: Wiley.Google Scholar
  14. Glynn, J., Perera, N., & Verma, R. (2007). Unit root tests and structural breaks: A survey with applications. Revista de Métodos Cuantitativos para la Economía y la Empresa, 3, 63–79.Google Scholar
  15. González, A., Teräsvirta, T., & Dijk, D. V. (2005). Panel smooth transition regression models (Technical report), SSE/EFI Working Paper Series in Economics and Finance.Google Scholar
  16. Hansen, B. E. (2001). The new econometrics of structural change: Dating breaks in us labor productivity. The Journal of Economic Perspectives, 15(4), 117–128.CrossRefGoogle Scholar
  17. Lanne, M., Lütkepohl, H., & Saikkonen, P. (2002). Comparison of unit root tests for time series with level shifts. Journal of Time Series Analysis, 23(6), 667–685.CrossRefGoogle Scholar
  18. Lanne, M., Lütkepohl, H., & Saikkonen, P. (2003). Test procedures for unit roots in time series with level shifts at unknown time. Oxford Bulletin of Economics and Statistics, 65(1), 91–115.CrossRefGoogle Scholar
  19. Lee, J., & Strazicich, M. C. (2003). Minimum Lagrange multiplier unit root test with two structural breaks. The Review of Economics and Statistics, 85(4), 1082–1089.CrossRefGoogle Scholar
  20. Leybourne, S., Newbold, P., & Vougas, D. (1998). Unit roots and smooth transitions. Journal of Time Series Analysis, 19(1), 83–97.CrossRefGoogle Scholar
  21. Lucas, R. E. (1976). Econometric policy evaluation: A critique. In Carnegie-Rochester conference series on public policy (Vol. 1, pp. 19–46). Amsterdam: Elsevier.CrossRefGoogle Scholar
  22. Lumsdaine, R. L., & Papell, D. H. (1997). Multiple trend breaks and the unit-root hypothesis. The Review of Economics and Statistics, 79(2), 212–218.CrossRefGoogle Scholar
  23. Lütkepohl, H., & Wolters, J. (2003). Transmission of German monetary policy in the pre-euro period. Macroeconomic Dynamics, 7(5), 711–733.CrossRefGoogle Scholar
  24. Maddala, G. S., & Kim, I.-M. (1998). Unit roots, cointegration, and structural change. Cambridge: Cambridge University Press.Google Scholar
  25. Narayan, P. K., & Popp, S. (2010). A new unit root test with two structural breaks in level and slope at unknown time. Journal of Applied Statistics, 37(9), 1425–1438.CrossRefGoogle Scholar
  26. Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconomic time series: Some evidence and implications. Journal of Monetary Economics, 10(2), 139–162.CrossRefGoogle Scholar
  27. Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econometrica: Journal of the Econometric Society, 57(6), 1361–1401.CrossRefGoogle Scholar
  28. Perron, P. (1997). Further evidence on breaking trend functions in macroeconomic variables. Journal of Econometrics, 80(2), 355–385.CrossRefGoogle Scholar
  29. Perron, P., & Vogelsang, T. J. (1992). Nonstationarity and level shifts with an application to purchasing power parity. Journal of Business and Economic Statistics, 10(3), 301–320.Google Scholar
  30. Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599–607.CrossRefGoogle Scholar
  31. Saikkonen, P., & Lütkepohl, H. (2000). Testing for the cointegrating rank of a VAR process with structural shifts. Journal of Business and Economic Statistics, 18(4), 451–464.Google Scholar
  32. Schwarz, G. W. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.CrossRefGoogle Scholar
  33. Vogelsang, T. J., & Perron, P. (1998). Additional tests for a unit root allowing for a break in the trend function at an unknown time. International Economic Review, 39, 1073–1100.CrossRefGoogle Scholar
  34. Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the Great Crash, the oil-price shock, and the unit-root hypothesis. Journal of Business and Economic Statistics, 20(1), 25–44.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • John D. Levendis
    • 1
  1. 1.Department of EconomicsLoyola University New OrleansNew OrleansUSA

Personalised recommendations