Advertisement

Structural Breaks

  • John D. Levendis
Chapter
Part of the Springer Texts in Business and Economics book series (STBE)

Abstract

In 1976, Robert Lucas offered one of the strongest criticisms of the Cowles Commission large-scale econometric modeling approach. Lucas critiqued Cowles’ presumption that many economic phenomena are structural. They are not.

References

  1. Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66, 47–78.CrossRefGoogle Scholar
  2. Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1–22.CrossRefGoogle Scholar
  3. Bai, J., Lumsdaine, R. L., & Stock, J. H. (1998). Testing for and dating common breaks in multivariate time series. The Review of Economic Studies, 65(3), 395–432.CrossRefGoogle Scholar
  4. Banerjee, A., Lumsdaine, R. L., & Stock, J. H. (1992). Recursive and sequential tests of the unit-root and trend-break hypotheses: Theory and international evidence. Journal of Business and Economic Statistics, 10(3), 271–287.Google Scholar
  5. Baum, C. (2015). Zandrews: Stata module to calculate Zivot-Andrews unit root test in presence of structural break. https://EconPapers.repec.org/RePEc:boc:bocode:s437301 Google Scholar
  6. Byrne, J. P., & Perman, R. (2007). Unit roots and structural breaks: A survey of the literature. In B. B. Rao, (Ed.), Cointegration for the applied economist (2nd ed., pp. 129–142). New York: Palgrave Macmillan.Google Scholar
  7. Campbell, J. Y., & Mankiw, N. G. (1987a). Are output fluctuations transitory? The Quarterly Journal of Economics, 102(4), 857–880.CrossRefGoogle Scholar
  8. Campbell, J. Y., & Mankiw, N. G. (1987b). Permanent and transitory components in macroeconomic fluctuations. The American Economic Review, Papers and Proceedings, 77(2), 111–117.Google Scholar
  9. Chang, S. Y., & Perron, P. (2017). Fractional unit root tests allowing for a structural change in trend under both the null and alternative hypotheses. Econometrics, 5(1), 5.CrossRefGoogle Scholar
  10. Christiano, L. J. (1992). Searching for a break in GNP. Journal of Business and Economic Statistics, 10(3), 237–250.Google Scholar
  11. Clemente, J., Gadea, M. D., Montañés, A., & Reyes, M. (2017). Structural breaks, inflation and interest rates: Evidence from the G7 countries. Econometrics, 5(1), 11.CrossRefGoogle Scholar
  12. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431.CrossRefGoogle Scholar
  13. Enders, W. (2014). Applied econometric time series (3rd edn.). New York: Wiley.Google Scholar
  14. Glynn, J., Perera, N., & Verma, R. (2007). Unit root tests and structural breaks: A survey with applications. Revista de Métodos Cuantitativos para la Economía y la Empresa, 3, 63–79.Google Scholar
  15. González, A., Teräsvirta, T., & Dijk, D. V. (2005). Panel smooth transition regression models (Technical report), SSE/EFI Working Paper Series in Economics and Finance.Google Scholar
  16. Hansen, B. E. (2001). The new econometrics of structural change: Dating breaks in us labor productivity. The Journal of Economic Perspectives, 15(4), 117–128.CrossRefGoogle Scholar
  17. Lanne, M., Lütkepohl, H., & Saikkonen, P. (2002). Comparison of unit root tests for time series with level shifts. Journal of Time Series Analysis, 23(6), 667–685.CrossRefGoogle Scholar
  18. Lanne, M., Lütkepohl, H., & Saikkonen, P. (2003). Test procedures for unit roots in time series with level shifts at unknown time. Oxford Bulletin of Economics and Statistics, 65(1), 91–115.CrossRefGoogle Scholar
  19. Lee, J., & Strazicich, M. C. (2003). Minimum Lagrange multiplier unit root test with two structural breaks. The Review of Economics and Statistics, 85(4), 1082–1089.CrossRefGoogle Scholar
  20. Leybourne, S., Newbold, P., & Vougas, D. (1998). Unit roots and smooth transitions. Journal of Time Series Analysis, 19(1), 83–97.CrossRefGoogle Scholar
  21. Lucas, R. E. (1976). Econometric policy evaluation: A critique. In Carnegie-Rochester conference series on public policy (Vol. 1, pp. 19–46). Amsterdam: Elsevier.CrossRefGoogle Scholar
  22. Lumsdaine, R. L., & Papell, D. H. (1997). Multiple trend breaks and the unit-root hypothesis. The Review of Economics and Statistics, 79(2), 212–218.CrossRefGoogle Scholar
  23. Lütkepohl, H., & Wolters, J. (2003). Transmission of German monetary policy in the pre-euro period. Macroeconomic Dynamics, 7(5), 711–733.CrossRefGoogle Scholar
  24. Maddala, G. S., & Kim, I.-M. (1998). Unit roots, cointegration, and structural change. Cambridge: Cambridge University Press.Google Scholar
  25. Narayan, P. K., & Popp, S. (2010). A new unit root test with two structural breaks in level and slope at unknown time. Journal of Applied Statistics, 37(9), 1425–1438.CrossRefGoogle Scholar
  26. Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconomic time series: Some evidence and implications. Journal of Monetary Economics, 10(2), 139–162.CrossRefGoogle Scholar
  27. Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econometrica: Journal of the Econometric Society, 57(6), 1361–1401.CrossRefGoogle Scholar
  28. Perron, P. (1997). Further evidence on breaking trend functions in macroeconomic variables. Journal of Econometrics, 80(2), 355–385.CrossRefGoogle Scholar
  29. Perron, P., & Vogelsang, T. J. (1992). Nonstationarity and level shifts with an application to purchasing power parity. Journal of Business and Economic Statistics, 10(3), 301–320.Google Scholar
  30. Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599–607.CrossRefGoogle Scholar
  31. Saikkonen, P., & Lütkepohl, H. (2000). Testing for the cointegrating rank of a VAR process with structural shifts. Journal of Business and Economic Statistics, 18(4), 451–464.Google Scholar
  32. Schwarz, G. W. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.CrossRefGoogle Scholar
  33. Vogelsang, T. J., & Perron, P. (1998). Additional tests for a unit root allowing for a break in the trend function at an unknown time. International Economic Review, 39, 1073–1100.CrossRefGoogle Scholar
  34. Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the Great Crash, the oil-price shock, and the unit-root hypothesis. Journal of Business and Economic Statistics, 20(1), 25–44.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • John D. Levendis
    • 1
  1. 1.Department of EconomicsLoyola University New OrleansNew OrleansUSA

Personalised recommendations