Advertisement

Unit Root Tests

  • John D. Levendis
Chapter
Part of the Springer Texts in Business and Economics book series (STBE)

Abstract

A process might be non-stationary without being a unit root. The two concepts are related, but they are not identical and it is common to confuse the two. We can have non-stationarity without it being due to a unit root. We could have a seasonal model. Or, we could have a deterministic trend. (We can even have non-stationarity because the variance is changing over time.)

References

  1. Beaulieu, J. J., & Miron, J. A. (1993). Seasonal unit roots in aggregate US data. Journal of Econometrics, 55(1–2), 305–328.CrossRefGoogle Scholar
  2. Campbell, J. Y., & Perron, P. (1991). Pitfalls and opportunities: What macroeconomists should know about unit roots. NBER Macroeconomics Annual, 6, 141–201.CrossRefGoogle Scholar
  3. Cheung, Y.-W., & Lai, K. S. (1995a). Lag order and critical values of the augmented Dickey–Fuller test. Journal of Business and Economic Statistics, 13(3), 277–280.Google Scholar
  4. Cheung, Y.-W., & Lai, K. S. (1995b). Practitionar’s Corner: Lag order and critical values of a modified Dickey-Fuller test. Oxford Bulletin of Economics and Statistics, 57(3), 411–419.CrossRefGoogle Scholar
  5. Christiano, L. J., & Eichenbaum, M. (1990). Unit roots in real GNP: Do we know, and do we care? In Carnegie-Rochester conference series on public policy (Vol. 32, pp. 7–61). Amsterdam: Elsevier.CrossRefGoogle Scholar
  6. Cochrane, J. H. (1991). A critique of the application of unit root tests. Journal of Economic Dynamics and Control, 15(2), 275–284.CrossRefGoogle Scholar
  7. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431.CrossRefGoogle Scholar
  8. Elliott, G., Rothenberg, T. J., & Stock, J. H. (1992). Efficient tests for an autoregressive unit root. Working Paper 130, National Bureau of Economic Research. http://www.nber.org/papers/t0130.
  9. Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient tests of the unit root hypothesis. Econometrica, 64(4), 813–836.CrossRefGoogle Scholar
  10. Ghysels, E., & Perron, P. (1993). The effect of seasonal adjustment filters on tests for a unit root. Journal of Econometrics, 55(1–2), 57–98.CrossRefGoogle Scholar
  11. Ghysels, E., Lee, H. S., & Noh, J. (1994). Testing for unit roots in seasonal time series: Some theoretical extensions and a monte carlo investigation. Journal of Econometrics, 62(2), 415–442.CrossRefGoogle Scholar
  12. Hadri, K. (2000). Testing for stationarity in heterogeneous panel data. The Econometrics Journal, 3(2), 148–161.CrossRefGoogle Scholar
  13. Hylleberg, S., Engle, R. F., Granger, C. W., & Yoo, B. S. (1990). Seasonal integration and cointegration. Journal of Econometrics, 44(1), 215–238.CrossRefGoogle Scholar
  14. Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53–74.CrossRefGoogle Scholar
  15. Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1–3), 159–178.CrossRefGoogle Scholar
  16. Levin, A., Lin, C.-F., & Chu, C.-S. J. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics, 108(1), 1–24.CrossRefGoogle Scholar
  17. MacKinnon, J. G. (1991). Critical values for cointegration tests, Chapter 13. In R. F. Engle & C. W. J. Granger (Eds.), Long-run economic relationships: Readings in cointegration. Oxford : Oxford University Press.Google Scholar
  18. MacKinnon, J. G. (2010). Critical values for cointegration tests (Technical report), Queen’s Economics Department Working Paper.Google Scholar
  19. Maddala, G. S., & Kim, I.-M. (1998). Unit roots, cointegration, and structural change. Cambridge: Cambridge University Press.Google Scholar
  20. Nelson, C. R., & Kang, H. (1981). Spurious periodicity in inappropriately detrended time series. Econometrica: Journal of the Econometric Society, 49, 741–751.CrossRefGoogle Scholar
  21. Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconomic time series: Some evidence and implications. Journal of Monetary Economics, 10(2), 139–162.CrossRefGoogle Scholar
  22. Newey, W. K., & West, K. D. (1986). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Working Paper 55, National Bureau of Economic Research. http://www.nber.org/papers/t0055.
  23. Ng, S., & Perron, P. (1995). Unit root tests in ARMA models with data-dependent methods for the selection of the truncation lag. Journal of the American Statistical Association, 90(429), 268–281.CrossRefGoogle Scholar
  24. Ng, S., & Perron, P. (2001). Lag length selection and the construction of unit root tests with good size and power. Econometrica, 69(6), 1519–1554.CrossRefGoogle Scholar
  25. Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265–312.CrossRefGoogle Scholar
  26. Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346.CrossRefGoogle Scholar
  27. Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599–607.CrossRefGoogle Scholar
  28. Schwarz, G. W. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.CrossRefGoogle Scholar
  29. Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business and Economic Statistics, 7(2), 147–159.Google Scholar
  30. Schwert, G. W. (2002). Tests for unit roots: A Monte Carlo investigation. Journal of Business and Economic Statistics, 20(1), 5–17.CrossRefGoogle Scholar
  31. Sephton, P. (2017). Finite sample critical values of the generalized KPSS stationarity test. Computational Economics, 50(1), 161–172.CrossRefGoogle Scholar
  32. Wu, S. (2010). Lag length selection in DF-GLS unit root tests. Communications in Statistics-Simulation and Computation, 39(8), 1590–1604.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • John D. Levendis
    • 1
  1. 1.Department of EconomicsLoyola University New OrleansNew OrleansUSA

Personalised recommendations