Marine Mammals pp 177-217 | Cite as

Sensory Systems

  • Randall W. Davis


Sensory receptors are specialized cells for transducing information from an animal’s environment into nerve impulses that are transmitted to the central nervous system for processing and integration to detect external variables and initiate responses that enhance survival. Each type of receptor has its own sensory modality such as photoreception (vision), mechanoreception (hearing, pressure, vibration, orientation, and acceleration), chemoreception (taste and smell), thermoreception (temperature), electroreception (electric field), and magnetoreception (magnetic field), although not all receptor types are present in every species, and some are more highly developed (i.e., provide greater acuity) than others. Although marine mammals evolved from terrestrial ancestors, the propagation and reception of light and sound in air and water are so different that these sensory systems have been modified for either a fully aquatic (Cetacea and Sirenia) or amphibious (pinnipeds and sea otters) lifestyle. Specialized tactile hairs (vibrissae) in some marine mammals, tactile sensitivity in the forepaws of sea otters, and electroreception in at least one species of Cetacea provide additional sensory information under disphotic (twilight) or aphotic (no solar light) conditions, which characterize most of the marine environment and some freshwater habitats. In contrast, chemosensory (olfaction and gustation) ability shows a convergent, evolutionary reduction associated with the transition from a terrestrial to aquatic life. Finally, emerging evidence indicates a magnetic sensory ability in Cetacea and pinnipeds for orientation and navigation during individual dives and long-distance migrations.


Sensory Receptor Vision Hearing Balance Touch Vibrissae Smell Taste Electroreception Magnetoreception 


  1. Antunes R, Schulz T, Gero S, Whitehead H, Gordon J, Rendell L (2011) Individually distinctive acoustic features in sperm whale codas. Anim Behav 81:723–730CrossRefGoogle Scholar
  2. Au WWL (2018) Echolocation. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 289–298CrossRefGoogle Scholar
  3. Bauer GB, Colbert DE, Gaspard JC, Littlefield B, Fellner W (2003) Underwater visual acuity of Florida manatees. Int J Comp Psychol 16:130–142Google Scholar
  4. Bauer GB, Gaspard JC, Colbert DE, Leach JB, Stamper SA, Mann D, Reep R (2012) Tactile discrimination of textures by Florida manatees (Trichechus manatus latirostris). Mar Mamm Sci 28:E456–E471CrossRefGoogle Scholar
  5. Behrmann G (1988) The peripheral nerve ends in the tongue of the harbour porpoise, Phocoena phocoena (Linne, 1758). Aquat Mamm 14:107–112Google Scholar
  6. Berta A, Ekdale EG, Cranford TW (2014) Review of the cetacean nose: form, function, and evolution. Anat Rec 297:2205–2215CrossRefGoogle Scholar
  7. Best RC (1981) Foods and feeding habits of wild and captive Sirenia. Mamm Rev 11(1):3–29CrossRefGoogle Scholar
  8. Bills ML (2011) Description of the chemical senses of the Florida manatee, Trichechus manatus latirostris, in relation to reproduction. Dissertation, University of Florida, GainsvilleGoogle Scholar
  9. Bischoff N, Nickle B, Cronin TW, Velasquez S, Fasick JI (2012) Deep-sea and pelagic rod visual pigments identified in the mysticete whales. Vis Neurosci 29:95–103PubMedCrossRefGoogle Scholar
  10. Bodson A, Miersch L, Mauck B, Dehnhardt G (2006) Underwater auditory localization by a swimming harbor seal (Phoca vitulina). J Acoust Soc Am 120:1550–1557PubMedCrossRefGoogle Scholar
  11. Bowditch N (1995) The American practical navigator. Defense mapping agency hydrographic/topographic center. Hydrographic Office of the United States Navy, Bethesda, pp 873Google Scholar
  12. Breathnach AS (1960) The cetacean central nervous system. Biol Rev 35:187–230CrossRefGoogle Scholar
  13. Busch H, Dücker G (1987) Das visuelle Leistungsvermögen der Seebären (Arctocephalus pusillus und Arctocephalus australis). Zool Anz 219:197–224Google Scholar
  14. Carrier DR, Debahn SM, Otterstrom J (2002) The face that sunk the Essex: potential function of the spermaceti organ in aggression. J Exp Biol 205:1755–1763PubMedGoogle Scholar
  15. Castellini MA, Davis RW, Kooyman GL (1992) Annual cycles of diving behavior and ecology of Weddell seals. Volume 28. University of California Press, Oakland, California, p 54Google Scholar
  16. Cave AJE (1988) Note on olfactory activity in mysticetes. J Zool 214:307–311CrossRefGoogle Scholar
  17. Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902PubMedCrossRefGoogle Scholar
  18. Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294PubMedCrossRefGoogle Scholar
  19. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS (2010) The cells and peripheral representation of sodium taste in mice. Nature 464:297–301PubMedPubMedCentralCrossRefGoogle Scholar
  20. Charrier I, Harcourt RG (2006) Individual vocal identity in mother and pup Australian sea lions (Neophoca cinerea). J Mammal 87:929–938CrossRefGoogle Scholar
  21. Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chikina M, Robinson JD, Clark NL (2016) Hundreds of genes experienced convergent shifts in selective pressure in marine mammals. Mol Biol Evol 33:2182–2192PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cleator HJ, Smith TG, Stirling I (1989) Underwater vocalizations of the bearded seal (Erignathus barbatus). Can J Zool 67:1900–1910CrossRefGoogle Scholar
  24. Cohen JL, Tucker GS, Odell DK (1982) The photoreceptors of the West Indian manatee. J Morphol 173:197–202PubMedCrossRefGoogle Scholar
  25. Colbert DE, Gaspard JC, Reep R, Mann DA, Bauer GB (2009) Four choice sound localization abilities of two Florida manatees, Trichechus manatus latirostris. J Exp Biol 212:2105–2112PubMedCrossRefGoogle Scholar
  26. Cranford TW (1999) The sperm whale’s nose: sexual selection on a grand scale? Mar Mamm Sci 15:1133–1157CrossRefGoogle Scholar
  27. Cranford T, Krysl P (2018) Sound paths, cetaceans. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 901–904CrossRefGoogle Scholar
  28. Cranford TW, Amundin M, Norris KS (1996) Functional morphology and homology in the odontocete nasal complex: implications for sound generation. J Morphol 228:223–285PubMedCrossRefGoogle Scholar
  29. Czech-Damal NU, Liebschner A, Miersch L, Klauer G, Hanke FD, Marshall C, Dehnhardt G, Hanke W (2012) Electroreception in the Guiana dolphin (Sotalia guianensis). Proc R Soc B 279:663–668PubMedCrossRefGoogle Scholar
  30. Czech-Damal NU, Dehnhardt G, Manger P, Hanke W (2013) Passive electroreception in aquatic mammals. J Comp Physiol A 199:555–563CrossRefGoogle Scholar
  31. Davis RW, Fuiman L, Williams TM, Le Boeuf BJ (2001) Three-dimensional movements and swimming activity of a female northern elephant seal. Comp Biochem Physiol A Mol Integr Physiol 129:759–770PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dehnhardt G (2002) Sensory systems. In: Hoelzel AR (ed) Marine mammmal biology. Blackwell Publishing, Oxford, pp 116–141Google Scholar
  33. Dehnhardt G, Hanke FD (2018) Whiskers. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 1074–1077CrossRefGoogle Scholar
  34. Dehnhardt G, Mauck B (2008) Mechanoreception in secondarily aquatic vertebrates. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold, University of California Press, Oakland, California, pp 295–314Google Scholar
  35. Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements. Nature 394:235–236CrossRefGoogle Scholar
  36. Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail following in harbor seals (Phoca vitulina). Science 293:102–104PubMedCrossRefGoogle Scholar
  37. Denton EJ (1990) Light and vision at depths greater than 200 metres. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge University Press, Cambridge, pp 127–148Google Scholar
  38. Dewan A, Pacifico R, Zhan R, Rinberg D, Bozza T (2013) Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497:486–489PubMedPubMedCentralCrossRefGoogle Scholar
  39. Domning DP (2005) Fossil sirenia of the West Atlantic and Caribbean region. VII. Pleistocene Trichechus manatus Linnaeus, 1758. J Vertebr Paleontol 25:685–701CrossRefGoogle Scholar
  40. Donaldson EJ (1977) The tongue of the bottlenose dolphin (Tursiops truncutus). In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 3. Academic Press, New York, pp 175–197Google Scholar
  41. Drake SE, Crish SD, George JC, Stimmelmayr R, Thewissen JGM (2015) Sensory hairs in the bowhead whale, Balaena mysticetus (Cetacea, Mammalia). Anat Rec 298:1327–1335CrossRefGoogle Scholar
  42. England DR, Dillon LS (1972) Cerebrum of the sea otter. Texas J Sci 24:22Google Scholar
  43. Erdogan S, Villar Arias S, Pérez W (2015) Morphology of the lingual surface of South American fur seal (Arctocephalus australis) and sea lion (Otaria flavescens). Microsc Res Tech 78:140–147PubMedCrossRefGoogle Scholar
  44. Fasick JI, Robinson PR (2000) Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Vis Neurosci 17:781–788PubMedCrossRefGoogle Scholar
  45. Fay RR (1988) Hearing vertebrates: a psychophysics databook. Hill-Fay Associates, WinnetkaGoogle Scholar
  46. Feng P, Zheng J, Rossiter SJ, Wang D, Zhao H (2014) Massive losses of taste receptor genes in toothed and baleen whales. Genome Biol Evol 6:1254–1265PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ferrando T, Caresano F, Ferrando S, Gallus L, Wurtz M, Taglifierro G (2010) The tongue morphology and lingual gland histochemistry of Ligurian sea odontocetes. Mar Mamm Sci 26:588–601Google Scholar
  48. Frankel AS (2018) Sound. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 889–901CrossRefGoogle Scholar
  49. Friedl WA, Nachtigall PE, Moore PWB, Chun NKW (1990) Taste reception in the Pacific bottlenose dolphin (Tursiops truncatus gilli) and the California sea lion (Zalophus californianus). In: Thomas J, Kastelein R (eds) Sensory abilities of cetaceans. Plenum, New York, pp 447–451CrossRefGoogle Scholar
  50. Funasaka N, Yoshioka M, Fujise Y (2010) Features of the ocular Harderian gland in three Balaenopterid species based on anatomical, histological and histochemical observations. Mamm Study 35:9–15CrossRefGoogle Scholar
  51. Gannon DP, Barros NB, Nowacek DP, Read AJ, Waples DM, Wells RS (2005) Prey detection by bottlenose dolphins, Tursiops truncatus: an experimental test of the passive listening hypothesis. Anim Behav 69:709–720CrossRefGoogle Scholar
  52. Gaspard JC, Bauer GB, Reep RL, Dziuk K, Cardwell A, Read L, Mann DA (2012) Audiogram and auditory critical ratios of two Florida manatees (Trichechus manatus latirostris). J Exp Biol 215:1442–1447PubMedCrossRefGoogle Scholar
  53. Ghoul A, Reichmuth C (2012) Sound production and reception in southern sea otters (Enhydra lutris nereis). In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life. Springer, New York, pp 157–159CrossRefGoogle Scholar
  54. Ghoul A, Reichmuth C (2014) Hearing in sea otters (Enhydra lutris): audible frequencies determined from a controlled exposure approach. Aquat Mamm 40:243–251CrossRefGoogle Scholar
  55. Ghoul A, Reichmuth C (2016) Auditory sensitivity and masking profiles for the sea otter (Enhydra lutris). In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life II. Springer, New York, pp 349–354CrossRefGoogle Scholar
  56. Ginter CC, Fish FE, Marshall CD (2010) Morphological analysis of the bumpy profile of phocid vibrissae. Mar Mamm Sci 26:733–743Google Scholar
  57. Godfrey SJ, Geisler J, Fitzgerald EMG (2013) On the olfactory anatomy in an archaic whale (Protocetidae, Cetacea) and the minke whale Balaenoptera acutorostrata (Balaenopteridae, Cetacea). Anat Rec 296:257–272CrossRefGoogle Scholar
  58. Griebel U, Schmid A (1996) Color vision in the manatee (Trichechus manatus). Vis Res 36:2747–2757PubMedCrossRefGoogle Scholar
  59. Hamilton JR (1956) Scent of otariids. Nature 177:900CrossRefGoogle Scholar
  60. Hammock J (2005) Structure, function and context: the impact of morphometry and ecology on olfactory sensitivity. Dissertation. Woods Hole Oceanographic Institution, Massachusettes Institute of TechnologyGoogle Scholar
  61. Hanke FD, Hanke W, Scholtyssek C, Dehnhardt G (2009) Basic mechanisms in pinniped vision. Exp Brain Res 199:299–311PubMedCrossRefGoogle Scholar
  62. Hanke W, Wieskotten S, Marshall C, Dehnhardt G (2013) Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae). J Comp Physiol A 199:421–440CrossRefGoogle Scholar
  63. Hardy MH, Roff E, Smith TG, Ryg M (1991) Facial skin glands of ringed and grey seals, and their possible function as odoriferous organs. Can J Zool 69:189–200CrossRefGoogle Scholar
  64. Harrison RJ, Kooyman GL (1968) General physiology of the pinnipeds. In: Harrison RJ, Hubbard RC, Peterson RS, Rice CE, Schusterman RJ (eds) The behavior and physiology of pinnipeds. Appleton-Century-Crofts, New York, pp 212–296Google Scholar
  65. Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hemilä S, Nummela S, Berta A, Reuter T (2006) High-frequency hearing in phocid and otariid pinnipeds: an interpretation based on inertial and cochlear constraints (L). J Acoust Soc Am 120:3463–3466PubMedCrossRefGoogle Scholar
  67. Hensel H, Andres KH, von During M (1974) Structure and function of cold receptors. Pflugers Arch 352:1–10PubMedCrossRefGoogle Scholar
  68. Herman LM, Peacock MF, Yunker MP, Madsen CJ (1975) Bottlenosed dolphin: double-split pupil yields equivalent aerial and underwater diurnal acuity. Science 189:650–652PubMedCrossRefGoogle Scholar
  69. Holland RA, Kirschvink JL, Doak TG, Wikelski M (2008) Bats use magnetite to detect the Earth’s magnetic field. PLoS One 3(2):e1676PubMedPubMedCentralCrossRefGoogle Scholar
  70. Insley SJ, Phillips AV, Charrier I (2003) A review of social recognition in pinnipeds. Aquat Mamm 29:181–201CrossRefGoogle Scholar
  71. Island HD, Wengeler J, Claussenius-Kalman H (2007) The Flehmen response and pseudosuckling in a captive, juvenile southern sea otter (Enhydra lutris nereis). Zoo Biol 9999:1–10Google Scholar
  72. Iwasaki S (2002) Evolution of the structure and function of the vertebrate tongue. J Anat 201:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  73. Jiang P, Josue J, Li X, Glaser D, Li W, Brand JG, Margolskee RF, Reed DR, Beauchamp GK (2012) Major taste loss in carnivorous mammals. Proc Natl Acad Sci U S A 109:4956–4961PubMedPubMedCentralCrossRefGoogle Scholar
  74. Johnson MP, Madsen PT, Zimmer WMX, Aguilar de Soto N, Tyack PL (2004) Beaked whales echolocate on prey. Proc R Soc Lond B Biol Sci 271:S383–S386Google Scholar
  75. Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218:916–918PubMedCrossRefGoogle Scholar
  76. Kamiya T, Yamasaki E (1981) A morphological note on the sinus hair of the dugong. In: Marsh H (ed) The Dugong: Proceedings of the Seminar/Workshop held at James Cook University of North Queensland, May 8–13, 1979. Department of Zoology, James Cook University of North Queensland, Australia, pp 193–197Google Scholar
  77. Kastak D, Schusterman RJ (1998) Low-frequency amphibious hearing in pinnipeds: methods, measurements, noise, and ecology. J Acoust Soc Am 103:2216–2228PubMedCrossRefGoogle Scholar
  78. Kastak D, Schusterman RJ (1999) In-air and underwater hearing sensitivity of a northern elephant seal (Mirounga angustirostris). Can J Zool 77:1751–1758CrossRefGoogle Scholar
  79. Kastelein RA, van Gaalen MA (1988) The sensitivity of the vibrissae of a Pacific walrus (Odobenus rosmarus divergens). Part 1. Aquat Mamm 14:123–133Google Scholar
  80. Kastelein RA, Stevens S, Mosterd P (1990) The tactile sensitivity of the mystacial vibrissae of a Pacific walrus (Odobenus rosmarus divergens). Part 2: masking. Aquat Mamm 16:78–87Google Scholar
  81. Kastelein RA, Zweypfenning RCVJ, Spekreijse H, Dubbeldam JL, Born EW (1993) The anatomy of the walrus head (Odobenus rosmarus). Part 3: the eyes and their function in walrus ecology. Aquat Mamm 19:61–92Google Scholar
  82. Kastelein RA, Dubbeldam JL, de Bakker MAG (1997) The anatomy of the walrus head (Odobenus rosmarus). Part 5: the tongue and its function in walrus ecology. Aquat Mamm 23:29–47Google Scholar
  83. Kastelein RA, Mosterd P, van Santen B, Hagedoorn M, de Haan D (2002) Underwater audiogram of a Pacific walrus (Odobenus rosmarus divergens) measured with narrow-band frequency-modulated signals. J Acoust Soc Am 112:2173–2182PubMedCrossRefGoogle Scholar
  84. Kastelein RA, Schie R, Verboom WC, de Haan D (2005) Underwater hearing sensitivity of a male and a female Steller sea lion (Eumetopias jubatus) J. J Acoust Soc Am 118:1820–1829PubMedCrossRefGoogle Scholar
  85. Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200PubMedCrossRefGoogle Scholar
  86. Keeton WT (1973) Release-site bias as a possible guide to the ‘map’ component in pigeon homing. J Comp Physiol 86:1–16CrossRefGoogle Scholar
  87. Kenyon KW (1969) The sea otter in the eastern Pacific Ocean. North American Fauna 68:1–352CrossRefGoogle Scholar
  88. Ketten (1992) Aquatic audition and echolocation. In: Webster D, Fay R, eds PA (eds) The biology of hearing. Springer, New York, pp 717–754CrossRefGoogle Scholar
  89. Ketten DR, Odell DK, Domning DP (1992) Structure, function, and adaptation of the manatee ear. In: Thomas J (ed) Marine mammal sensory systems. Plenum Press, New York, pp 77–95CrossRefGoogle Scholar
  90. Kirschvink J (1981) Ferromagnetic crystals (magnetite?) in human tissue. J Exp Biol 92:333–335PubMedGoogle Scholar
  91. Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13:181–201PubMedCrossRefGoogle Scholar
  92. Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Cur Opin Neurobiol 11:462–467CrossRefGoogle Scholar
  93. Kishida T, Thewissen JGM (2012) Evolutionary changes of the importance of olfaction in cetaceans based on the olfactory marker protein gene. Gene 492:349–353PubMedCrossRefGoogle Scholar
  94. Kishida T, Kubota S, Shirayama Y, Fukami H (2007) The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett 3:428–430PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kishida T, Thewissen JGM, Hayakawa T, Imai H, Agata K (2015) Aquatic adaptation and the evolution of smell and taste in whales. Zoolog Lett 1:9CrossRefGoogle Scholar
  96. Klinowska L (1985) Cetacean live stranding sites relate to geomagnetic topography. Aquat Mamm 1:27–32Google Scholar
  97. Komatsu S, Yamasaki F (1980) Formation of the pits with taste-buds at the ligual root in the striped dolphin, Stenella coeruleoalba. J Morphol 164:107–119PubMedCrossRefGoogle Scholar
  98. Kovacs KM (1995) Mother-pup reunions in harp seals, Phoca groenlandica: cues for the relocation of pups. Can J Zool 73:843–849CrossRefGoogle Scholar
  99. Kowalewsky S, Dambach M, Mauck B, Dehnhardt G (2006) High olfactory sensitivity for dimethyl sulphide in harbour seals. Biol Lett 2:106–109PubMedCrossRefGoogle Scholar
  100. Kroger RH, Kirschfeld K (1993) Optics of the harbor porpoise eye in water. J Opt Soc Am A 10:1481–1489PubMedCrossRefGoogle Scholar
  101. Kubota K (1968) Comparative anatomical and neurohistological observations on the tongue of the Northern fur seal (Callorhinus ursinus). Anat Rec 161:257–266PubMedCrossRefGoogle Scholar
  102. Kuznetsov VB (1974) A method of studying chemoreception in the Black sea bottlenose dolphin (Tursiops truncatus). In: Morphology, physiology and acoustics of marine mammals. Nauka Publishing House, Moscow, pp 27–45Google Scholar
  103. Ladygina TF, Popov VV, Supin AY (1985) Topical organization of somatic projections in the fur seal cerebral cortex. Neurophysiology 17:246–252CrossRefGoogle Scholar
  104. Landrau-Giovannetti N, Mignucci-Giannoni AA, Reidenberg JS (2014) Acoustical and anatomical determination of sound production and transmission in West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees. Anat Rec 297:1896–1907CrossRefGoogle Scholar
  105. Laska L, Svelander M, Amundin M (2008) Successful acquisition of an olfactory discrimination paradigm by South African fur seals, Arctocephalus pusillus. Physiol Behav 93:1033–1038PubMedCrossRefGoogle Scholar
  106. Laska L, Lord E, Selin S, Amundin M (2010) Olfactory discrimination of aliphatic odorants in South African fur seals (Arctocephalus pusillus). J Comp Psychol 124:187–193PubMedCrossRefGoogle Scholar
  107. Lavigne DM, Ronald K (1975) Pinniped visual pigments. Comp Biochem Physiol 52B:325–329Google Scholar
  108. Lefebvre LW, O’Shea TJ, Rathbun GB, Best RC (1989) Distribution, status, and biogeography of the West Indian manatee. In: Woods CA (ed) Biogeography of the West Indies. Sandhill Crane Press, Gainesville, pp 567–610Google Scholar
  109. Levenson DH, Schusterman RJ (1999) Dark adaptation and visual sensitivity in shallow and deep diving pinnipeds. Mar Mamm Sci 15:1303–1313CrossRefGoogle Scholar
  110. Levenson DH, Ponganis PJ, Crognale MA, Deegan JF, Dizon A, Jacobs GH (2006) Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. J Comp Physiol A 192:833–884CrossRefGoogle Scholar
  111. Levin MJ, Pfeiffer CJ (2002) Gross and microscopic observations on the lingual structure of the Florida manatee trichechus manatus latirostris. Anat Histol Embryol 31:278–285PubMedCrossRefGoogle Scholar
  112. Liberles SD (2009) Trace amine-associated receptors are olfactory receptors in vertebrates. Ann NY Acad Sci 1170:168–172PubMedCrossRefGoogle Scholar
  113. Liman ER, Zhang YV, Montell C (2014) Peripheral coding of taste. Neuron 81:984–1000PubMedPubMedCentralCrossRefGoogle Scholar
  114. Lowell WR, Flanigan WF (1980) Marine mammal chemoreception. Mamm Rev 10:53–59CrossRefGoogle Scholar
  115. Lythgoe JN, Dartnall HJ (1970) A “deep sea rhodopsin” in a mammal. Nature 227:955–956PubMedCrossRefGoogle Scholar
  116. Mackay-Sim A, Duvall D, Graves BM (1985) The West Indian manatee, Trichechus manatus, lacks a vomeronasal organ. Brain Behav Evol 27:186–194PubMedCrossRefGoogle Scholar
  117. Madsen PT, Jensen FH, Carder D, Ridgway S (2012) Dolphin whistles: a functional misnomer revealed by heliox breathing. Biol Lett 8:211–213PubMedCrossRefGoogle Scholar
  118. Marshall CD, Huth GD, Edmonds VM, Halin DL, Reep RL (1998) Prehensile use of perioral bristles during feeding and associated behaviors of the Florida manatee (Trichechus manatus latirostris). Mar Mamm Sci 14:274–289CrossRefGoogle Scholar
  119. Marshall CD, Kubilis PS, Juth GD, Edmonds VM, Halin DL, Reep RL (2000) Food-handling ability and feeding cycle of manatees feeding on several species of aquatic plants. J Mammal 81:649–658CrossRefGoogle Scholar
  120. Marshall CD, Maeda H, Iwata M, Furuta M, Asano S, Rosas F, Reep RL (2003) Orofacial morphology and feeding behaviour of the dugong, Amazonian, West African and Antillean manatees (Mammalia: Sirenia): functional morphology of the muscular-vibrissal complex. J Zool Lond 259:245–260CrossRefGoogle Scholar
  121. Marshall CD, Amin H, Kovacs KM, Lydersen C (2006) Microstructure and innervation of the mystacial vibrissal follicle-sinus complex in bearded seals, Erignathus barbatus (Pinnipedia: Phocidae). Anat Rec 288A:13–25CrossRefGoogle Scholar
  122. Marshall CD, Rozas K, Kot B, Gill V (2014) Innervation patterns of sea otter (Enhydra lutris) mystacial follicle-sinus complexes. Front Neuroanat 8(121):1–8Google Scholar
  123. Mass AM, Supin YA (2007) Adaptive features of the aquatic mammals’ eye. Anat Rec 290:701–715CrossRefGoogle Scholar
  124. Mass AM, Supin YA (2018) Vision. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 1035–1044CrossRefGoogle Scholar
  125. Mauck B, Eysel U, Dehnhardt G (2000) Selective heating of vibrissal follicles in seals (Phoca vitulina) and dolphins (Sotalia fluviatilis guiaensis). J Exp Biol 203:2125–2131PubMedGoogle Scholar
  126. Mazzuca L, Atkinson S, Keating B, Nitta E (1999) Cetacean mass strandings in the Hawaiian Archipelago, 1957–1998. Aquat Mamm 25:105–114Google Scholar
  127. McFarland WN (1971) Cetacean visual pigments. Vis Res 11:1065–1076PubMedCrossRefGoogle Scholar
  128. McGovern KA, Marshall CD, Davis RW (2014) Are vibrissae viable sensory structures for prey capture in northern elephant seals, Mirounga angustirostris? Anat Rec 298:750–760CrossRefGoogle Scholar
  129. McGowen MR, Clark C, Gatesy J (2008) The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between genetree reconciliation and supermatrix methods. Syst Biol 57:574–590PubMedCrossRefGoogle Scholar
  130. McShane LJ, Estes JA, Riedman ML, Staedler MM (1995) Repertoire, structure, and individual variation of vocalizations in the sea otter. J Mammal 76:414–427CrossRefGoogle Scholar
  131. Meisami E, Bhatnagar KP (1998) Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech 43:476–499PubMedCrossRefGoogle Scholar
  132. Meredith RW, Gatesy J, Emerling CA, York VM, Springer MS (2013) Rod monochromacy and the coevolution of cetacean retinal opsins. PLoS Genet 9(4):e1003432. CrossRefPubMedPubMedCentralGoogle Scholar
  133. Millard CL, Woolf CJ (1988) Sensory innervation of the hairs of the rat hindlimb: a light microscopic analysis. J Comp Neurol 277:183–194PubMedCrossRefGoogle Scholar
  134. Møhl B, Wahlberg M, Madsen PT, Heerfordt A, Lund A (2003) The monopulsed nature of sperm whale clicks. J Acoust Soc Am 114:1143–1154PubMedCrossRefGoogle Scholar
  135. Moore PWB, Schusterman RJ (1987) Audiometric assessment of northern fur seals, Callorhinus ursinus. Mar Mamm Sci 3:31–53CrossRefGoogle Scholar
  136. Morgane PJ, Jacobs JS (1972) Comparative anatomy of the cetacean nervous system. In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 1. Academic Press, New York, pp 117–224Google Scholar
  137. Murphy CJ, Howland HC (1991) The functional significance of crescent-shaped pupils and multiple pupillary apertures. J Exp Zool 5:22–28Google Scholar
  138. Murphy CJ, Bellhorn RW, Williams T, Burns MS, Schaeffel F, Howland HC (1990) Refractive state, ocular anatomy, and accommodative range of the sea otter (Enhydra lutris). Vis Res 30:23–32PubMedCrossRefGoogle Scholar
  139. Murphy CT, Reichmuth C, Mann D (2015) Vibrissal sensitivities in a harbor seal (Phoca vitulina). J Exp Biol 218:2463–2471PubMedCrossRefGoogle Scholar
  140. Nachtigall PE, Hall RW (1984) Taste reception in the bottlenosed dolphin. Acta Zool Fennica 172:147–148Google Scholar
  141. National Academies of Sciences, Engineering, and Medicine (2016) Approaches to understanding the cumulative effects of stressors on marine mammals. The National Academies Press, Washington, DC. Retrieved from Google Scholar
  142. Nevitt GA (1999) Olfactory foraging in Antarctic seabirds: a species specific attraction to krill odors. Mar Ecol Prog Ser 177:235–241CrossRefGoogle Scholar
  143. Newman LA, Robinson PR (2006) The visual pigments of the West Indian manatee (Trichechus manatus). Vis Res 46:3326–3330PubMedCrossRefGoogle Scholar
  144. Nowacek DP, Casper BM, Wells RW, Nowacek SM, Mann DA (2003) Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations. J Acoust Soc Am 114:66–69PubMedCrossRefGoogle Scholar
  145. Nummela S, Yamato M (2018) Hearing. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 462–469CrossRefGoogle Scholar
  146. O’Shea T, Poche LB (2006) Aspects of underwater sound communication in Florida manatees (Trichechus manatus latirostris). J Mammal 87:1061–1071CrossRefGoogle Scholar
  147. Oelschläger HA (1989) Early development of the olfactory and terminalis systems in baleen whales. Brain Behav Evol 34:171–183PubMedCrossRefGoogle Scholar
  148. Payne R, Webb D (1971) Orientation by means of long range acoustic signaling in baleen whales. Ann N Y Acad Sci 188:110–142PubMedCrossRefGoogle Scholar
  149. Peichl L, Behrmann G, Kroger RHH (2001) For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur J Neurosci 13:1520–1528PubMedCrossRefGoogle Scholar
  150. Pfeiffer DC, Wang A, Nicolas J, Pfeiffer CF (2001) Lingual ultrastructure of the long-finned pilot whale (Globicephala melas). Anat Histol Embryol 30:359–365PubMedCrossRefGoogle Scholar
  151. Piggins D, Muntz WRA, Best RC (1983) Physical and morphological aspects of the eye of the manatee Trichechus inunguis NATTERER 1883. Mar Freshw Behav Phy 9:111–130CrossRefGoogle Scholar
  152. Pihlström H, Fortelius M, Hemilä S, Forsman R, Reuter T (2005) Scaling of mammalian ethmoid bones can predict olfactory organ size and performance. Proc R Soc Lond B 272:957–962CrossRefGoogle Scholar
  153. Pilleri G, Gihr M (1970) The central nervous system of the Mysticete and Odontocete whales. Invest Cetacea 2:89–127Google Scholar
  154. Pitcher BJ, Harcourt RG, Charrier I (2012) Individual identity encoding and environmental constraints in vocal recognition of pups by Australian sea lion mothers. Anim Behav 83:681–690CrossRefGoogle Scholar
  155. Radinsky LB (1968) Evolution of somatic sensory specialization in otter brains. J Comp Neurol 134:495–506PubMedCrossRefGoogle Scholar
  156. Reep RL, Marshall CD, Stoll ML (2002) Tactile hairs on the postcranial body in Florida manatees: a mammalian lateral line? Brain Behav Evol 9:141–154CrossRefGoogle Scholar
  157. Reep RL, Marshall CD, Stoll ML, Whitaker DM (1998) Distribution and innervation of facial bristles and hairs in the Florida manatee (Trichechus manatus latirostris). Mar Mamm Sci 14:257–273CrossRefGoogle Scholar
  158. Reep RL, Stoll ML, Marshall CD, Homer BL, Samuelson DA (2001) Microanatomy of facial vibrissae in the Florida manatee: the basis for specialized sensory function and oripulation. Brain Behav Evol 58:1–14PubMedCrossRefGoogle Scholar
  159. Reichmuth C, Holt MH, Mulsow J, Sills JM, Southall BL (2013) Comparative assessment of amphibious hearing in pinnipeds. J Comp Physiol A 199:491–507CrossRefGoogle Scholar
  160. Reidenberg JS, Laitman JT (2007) Discovery of a low frequency sound source in mysticeti (Baleen whales): anatomical establishment of a vocal fold homolog. Anat Rec 290:745–760CrossRefGoogle Scholar
  161. Renaud DL, Popper AN (1975) Sound localization by the bottlenose porpoise Tursiops truncatus. J Exp Biol 63:569–585PubMedGoogle Scholar
  162. Richardson WJ, Greene CR, Malme CI, Thomson DH (1995) Marine mammals and noise. Academic Press, New YorkGoogle Scholar
  163. Ridgway SH, Carder DA (1990) Tactile sensitivity, somatosensory responses, skin vibrations and the skin surface ridges of the bottlenose dolphin, Tursiops truncatus. In: Thomas J, Kastelein R (eds) Sensory abilities of cetaceans. Plenum Press, New York, pp 163–179CrossRefGoogle Scholar
  164. Ridgway S, Houser D, Finneran J, Carder D, Keogh M, Van Bonn W, Smith C, Scadeng M, Dubowitz D, Mattrey R, Hoh C (2006) Functional imaging of dolphin brain metabolism and blood flow. J Exp Biol 209:2902–2910PubMedCrossRefGoogle Scholar
  165. Rivamonte LA (2009) Bottlenose dolphin (Tursiops truncatus) double-slit pupil asymmetries enhance vision. Aquat Mamm 35:269–280CrossRefGoogle Scholar
  166. Root CM, Denny CA, Hen R, Axel R (2014) The participation of cortical amygdala in innate, odour-driven behaviour. Nature 515:269–273PubMedPubMedCentralCrossRefGoogle Scholar
  167. Russell LR, Purdy JE, Davis RW (2016) Social context determines vocalization usage by Weddell seals during the breeding season. Anim Behav Cogn 3:95–119CrossRefGoogle Scholar
  168. Sarko DK, Reep RL, Mazurkiewicz JE, Rice FL (2007) Adaptations in the structure and innervation of follicle-sinus complexes to an aquatic environment as seen in the Florida manatee (Trichechus manatus latirostris). J Comp Neurol 504:217–237PubMedCrossRefGoogle Scholar
  169. Sato JJ, Wolsan M (2012) Loss or major reduction of umami taste sensation in pinnipeds. Naturwissenschaften 99:655–659PubMedPubMedCentralCrossRefGoogle Scholar
  170. Sauvé CC, Beauplet G, Hammill MO, Charrier I (2015) Mother-pup vocal recognition in harbour seals: influence of maternal behavior, pup voice and habitat sound properties. Anim Behav 105:108–120CrossRefGoogle Scholar
  171. Schmidt-Koenig K, Walcott C (1978) Tracks of pigeons homing with frosted lenses. Anim Behav 26:480–486CrossRefGoogle Scholar
  172. Schusterman RJ, Balliet RF (1970) Visual acuity of the harbour seal and the Steller sea lion under water. Nature 226:563–564PubMedCrossRefGoogle Scholar
  173. Schusterman RJ, Balliet RF (1971) Aerial and underwater visual acuity in the California sea lion (Zalophus californianus) as a function of luminance. Ann N Y Acad Sci 188:37–46PubMedCrossRefGoogle Scholar
  174. Schusterman RJ, Moore P (1978) The upper limit of underwater auditory frequency discrimination in the California sea lion. J Acoust Soc Am 63:1591–1595PubMedCrossRefGoogle Scholar
  175. Schusterman RJ, Balllet RF, St. John S (1970) Vocal displays under water by the grey seal, harbor seal and Steller sea lion. Psychon Sci 18:303–305CrossRefGoogle Scholar
  176. Schusterman RJ, Balliet RF, Nixon J (1972) Underwater audiogram of the California sea lion by the conditioned vocalization technique. J Exp Anal Behav 17:339–350PubMedPubMedCentralCrossRefGoogle Scholar
  177. Shimek SJ (1977) Observations on the underwater foraging habits of the southern sea otter. Calif Fish Game 63:120–121.Google Scholar
  178. Shimoda T, Nakanishi E, Yoshino S, Kobayashi S (1996) Light and scanning electron microscopic study on the lingual papillae in the newborn sea otter Enhydra lutris. Okajimas Folia Anat Jpn 73:65–74PubMedCrossRefGoogle Scholar
  179. Slijper E (1962) Whales. Hutchinson, London, p 511Google Scholar
  180. Sonntag CF (1923) The comparative anatomy of the tongues of the Mammalia. 8. Carnivora. Proc Zool Soc Lond 9:129–153Google Scholar
  181. Spoor F, Thewissen JGM (2008) Balance: comparative and functional anatomy in aquatic mammals. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold, adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 257–284Google Scholar
  182. Spoor F, Bajpai S, Hussain ST, Kumar K, Thewissen JGM (2002) Vestibular evidence for the evolution of aquatic behaviour in early cetaceans. Nature 417:163–166PubMedCrossRefGoogle Scholar
  183. Stoddart DM (1980a) Olfaction in mammals. Zoological Society of London, Symposium 45. Academic Press, London, p 363Google Scholar
  184. Stoddart DM (1980b) The ecology of vertebrate olfaction. Chapman and Hall, London, p 234CrossRefGoogle Scholar
  185. Strobel SM, Sills JM, Tinker MT, Reichmuth CJ (2018) Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae. PubMedCrossRefGoogle Scholar
  186. Strod T, Arad Z, Izhaki I, Katzir G (2004) Cormorants keep their power: visual resolution in a pursuit-diving bird under amphibious and turbid conditions. Curr Biol 14:R376–R377PubMedCrossRefGoogle Scholar
  187. Tarpley RJ, Gelderd JB, Bauserman S, Ridgway SH (1994) Dolphin peripheral visual pathway in chronic unilateral ocular atrophy: complete decussation apparent. J Morphol 222:91–102PubMedPubMedCentralCrossRefGoogle Scholar
  188. Thewissen JGM, George J, Rosa C, Kishida T (2011) Olfaction and brain size in the bowhead whale (Balaena mysticetus). Mar Mamm Sci 27:282–294CrossRefGoogle Scholar
  189. Thomas JA, Kuechle VB (1982) Quantitative analysis of Weddell seal (Lepronychores weddelii) underwater vocalizations at McMurdo Sound, Antarctica. J Acoust Soc Am 72:1730–1738PubMedCrossRefGoogle Scholar
  190. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332PubMedCrossRefGoogle Scholar
  191. Tu YH, Cooper AJ, Teng B, Chang RB, Artiga DJ, Turner HN, Mulhall EM, Ye W, Smith AD, Liman ER (2018) An evolutionarily conserved gene family encodes proton-selective ion channels. Sci 359:1047–1050CrossRefGoogle Scholar
  192. Van Parijs SM, Corkeron PJ, Harvey J, Hayes SA, Mellinger DK, Rouget PA, Thompson PM, Wahlberg M, Kovacs KM (2003) Patterns in the vocalisations of male harbor seals. J Acoust Soc Am 113:403–410Google Scholar
  193. Van Valkenburgh B, Curtis A, Samuels JX, Bird D, Fulkerson B, Meachen-Samuels J, Slater GJ (2011) Aquatic adaptations in the nose of carnivorans: evidence from the turbinates. J Anat 218:298–310PubMedPubMedCentralCrossRefGoogle Scholar
  194. Vandenbeuch A, Clapp TR, Kinnamon SC (2008) Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 9:1PubMedPubMedCentralCrossRefGoogle Scholar
  195. Vanselow KH, Ricklefs K (2005) Are solar activity and sperm whale Physeter macrocephalus strandings around the North sea related? J Sea Res 53:319–327CrossRefGoogle Scholar
  196. Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin, pp 143–151CrossRefGoogle Scholar
  197. Walcott C, Schmidt-Koenig K (1973) The effect on pigeon homing of anesthesia during displacement. Auk 90:281–286Google Scholar
  198. Waller GH, Harrison RJ (1978) The significance of eyelid glands in delphinids. Aquat Mamm 6:1–9Google Scholar
  199. Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712PubMedCrossRefGoogle Scholar
  200. Wartzok D (1979) Phocid spectral sensitivity curves. In: Proceedings of the 3rd biennial conference on the biology of marine mammals, Seattle, October 1979, p 62Google Scholar
  201. Wartzok D, Ketten DR (1999) Marine mammal sensory systems. In: Reynolds J, Rommel S (eds) Biology of marine mammals. Smithsonian Institution Press, Washington, DC, pp 117–175Google Scholar
  202. Wartzok D, McCormick MG (1978) Color discrimination by a Bering sea spotted seal, Phoca largha. Vis Res 18:781–784PubMedCrossRefGoogle Scholar
  203. Wartzok D, Elsner R, Stone H, Kelly BP, Davis RW (1992) Under-ice movements and the sensory basis of hole finding by ringed and Weddell seals. Can J Zool 70:1712–1722CrossRefGoogle Scholar
  204. Watwood SL, Miller PJO, Johnson M, Madsen PT, Tyack PL (2006) Deep-diving foraging behavior of sperm whales (Physeter macrocephalus). J Anim Ecol 75:814–825PubMedCrossRefGoogle Scholar
  205. Werth AJ (2007) Adaptations of the cetacean hyolingual apparatus for aquatic feeding and thermoregulation. Anat Rec 290:546–568CrossRefGoogle Scholar
  206. Whitehead H (2018) Sperm whale. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 919–925CrossRefGoogle Scholar
  207. Wieskotten S, Mauck B, Miersch L, Dehnhardt G, Hanke W (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930PubMedCrossRefGoogle Scholar
  208. Willmer P, Graham S, Johnston I (2005) Environmental physiology of animals. Blackwell Science, Oxford, p 754Google Scholar
  209. Wolt R, Gelwick FP, Weltz F, Davis RW (2012) Foraging behavior and prey preference of sea otters (Enhydra lutris kenyoni) in a predominantly soft sediment habitat in Alaska. Mamm Biol 77:271–280CrossRefGoogle Scholar
  210. Yamasaki F, Komatsu S, Kamiya T (1978) Taste buds in the pits at the posterior dorsum of the tongue of Stenella coeruleoalba. Sci Rep Whales Res Inst 30:285–290Google Scholar
  211. Yamasaki F, Komatsu S, Kamiya T (1980) A comparative morphological study on the tongues of manatee and dugong (Sirenia). Sci Rep Whales Res Inst 32:127–144Google Scholar
  212. Yea W, Changa RB, Bushmana JD, Tua Y-H, Mulhalla EM, Wilson CE, Coopera AJ, Chickd WS, Hill-Eubanks DC, Nelson MT, Kinnamonb SC, Limana ER (2015) The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. Proc Natl Acad Sci U S A 113:E229–E238CrossRefGoogle Scholar
  213. Yim H-S, Cho YS, Guang X, Kang SG, Jeong J-Y, Cha S-S, Oh H-M et al (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46:88–92PubMedCrossRefGoogle Scholar
  214. Yoshimura K, Kobayashi K (1997) A comparative morphological study on the tongue and the lingual papillae of some marine mammals-particularly of four species of Odontoceti and Zalophus. Odontology 85:385–507Google Scholar
  215. Yoshimura K, Shindoh J, Kobayashi K (2002) Scanning electron microscopy study of the tongue and lingual papillae of the California sea lion (Zalophus californianus). Anat Rec 267:146–153PubMedCrossRefGoogle Scholar
  216. Yoshimura K, Shindo J, Miyawaki Y, Kobayashi K, Kageyama I (2007) Scanning electron microscopic study on the tongue and lingual papillae of the adult spotted seal, Phoca largha. Okajimas Folia Anat Jpn 84:83–97PubMedCrossRefGoogle Scholar
  217. Yu L, Jin W, Wang J, Zhang X, Chen M, Zhou Z, Lee H, Lee M, Zhang Y (2010) Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Mol Biol Evol 27:1467–1477PubMedCrossRefGoogle Scholar
  218. Zoeger J, Dunn JR, Fuller M (1980) Magnetic material in the head of a dolphin (abst.). Trans Am Geophys Union 61:225Google Scholar
  219. Zoeger J, Dunn JR, Fuller M (1981) Magnetic material in the head of the common Pacific dolphin. Science 213:892–894PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Randall W. Davis
    • 1
  1. 1.Marine BiologyTexas A&M UniversityGalvestonUSA

Personalised recommendations