Respiration and the Effects of Pressure

  • Randall W. Davis


Respiration refers to gas exchange between an animal and the environment. Except for sea otters, which have unusually large lungs, the lung volumes of marine and terrestrial mammals scale isometrically with body mass. Compared with terrestrial mammals, marine mammals have a larger tidal volume (relative to total lung volume), exhibit high tidal flows (especially in small Odontoceti), and breathe apneustically in which there are periods of apnea. When averaged over periods of eupnea and apnea, marine mammals have a resting respiratory rate that is much less than predicted for but an average tidal volume that is threefold larger than predicted. Barotrauma is physical damage to tissues caused by a difference in pressure between gas in the respiratory system and the surrounding fluid or tissue, and this can be avoided if the pressure equalizes. Marine mammals have a very compliant thorax that enables their lungs (primarily the alveoli) to collapse under pressure. To prevent a high partial pressures of nitrogen in blood and tissues resulting in decompression sickness and nitrogen narcosis, reinforcement of the terminal airways in the lungs of pinnipeds and Cetacea allows the alveoli to collapse eventually isolating residual gas in the non-gas-exchanging airways. There is no clear effect of pressure on enzyme and membrane structure and function in marine mammals, but how they tolerate high pressures remains unknown.


Respiration Oxygen Carbon dioxide Pulmonary Pressure Barotrauma Decompression sickness Nitrogen narcosis High-pressure nervous syndrome 


  1. Bartholomew GA (1954) Body temperature and respiratory and heart rates in the northern elephant seal. J Mammal 35:211–218CrossRefGoogle Scholar
  2. Bélanger LF (1940) A study of the histological structure of the respiratory portion of the lungs of aquatic mammals. Am J Anat 67:437–469CrossRefGoogle Scholar
  3. Bergey M, Baier H (1987) Lung mechanical properties in the West Indian manatee (Trichechus manatus). Respir Physiol 68:63–7 5PubMedCrossRefPubMedCentralGoogle Scholar
  4. Berghage TE, Durman D (1980) U.S. Navy air decompression schedule risk analysis. Naval Medical Research Institute, Bethesda, p 22Google Scholar
  5. Berghage TE, David TD, Dyson CV (1979) Species differences in decompression. Undersea Biomed Res 6:1–13PubMedPubMedCentralGoogle Scholar
  6. Blix AS, Walløe L, Messelt EB (2013) On how whales avoid decompression sickness and why they sometimes strand. J Exp Biol 216:3385–3387PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bostrom BL, Fahlman A, Jones DR (2008) Tracheal compression delays alveolar collapse during deep diving in marine mammals. Respir Physiol Neurobiol 161:298–305PubMedCrossRefPubMedCentralGoogle Scholar
  8. Castellini MA, Castellini JM, Rivera PM (2001) Adaptations to pressure in the RBC metabolism of diving mammals. Comp Biochem Physiol A Mol Integr Physiol 129:751–757PubMedCrossRefPubMedCentralGoogle Scholar
  9. Castellini MA, Rivera PM, Castellini JM (2002) Biochemical aspects of pressure tolerance in marine mammals. Comp Biochem Physiol A Mol Integr Physiol 133:893–899PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chapla ME, Nowacek DP, Rommel SA, Sadler VM (2007) CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones. Hear Res 228:123–135PubMedCrossRefPubMedCentralGoogle Scholar
  11. Converse LJ, Fernandes PJ, MacWilliams PS, Bossart GD (1994) Hematology, serum chemistry, and morphometric reference values for Antillean manatees (Trichechus manatus manatus). J Zoo Wildl Med 25:423–431Google Scholar
  12. Cotton PB, Piscitelli MA, McLellan WA, Rommel SA, Dearolf JL, Pabst DA (2008) The gross morphology and histochemistry of respiratory muscles in bottlenose dolphins, Tursiops truncatus. J Morphol 269:1520–1538CrossRefGoogle Scholar
  13. Cousteau JY, Dumas F (1953) Rapture of the deep. In: The silent world. Harper and Row, Pub, New York, pp 21–33Google Scholar
  14. Craig AB (1968) Depth limits of breath hold diving (an example of fennology). Respir Physiol 5:14–22PubMedCrossRefGoogle Scholar
  15. Croll DA, Nishiguchi MK, Kaupp S (1992) Pressure and lactate dehydrogenase function in diving mammals and birds. Physiol Zool 65:1022–1027CrossRefGoogle Scholar
  16. Crosfill ML, Widdicombe JG (1961) Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. J Physiol 158:1–14PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cross ER (1962) Taravana. Skin Diver Magazine 11:42–45 as reported in Paulev 1965Google Scholar
  18. Davis RW (2014) A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. Journal of Comparative Physiology B 184:23–53CrossRefGoogle Scholar
  19. Davis RW, Jaquet N, Gendron D, Bazzino G, Markaida U, Gilly W (2007) Diving behavior of sperm whales in relation to the behavior of their main prey, jumbo squid in the Gulf of California, Mexico. Mar Ecol Prog Ser 333:291–302CrossRefGoogle Scholar
  20. Davis RW, Kanatous SB (1999) Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. J Exp Biol 202:1091–1113PubMedGoogle Scholar
  21. Davis RW, Williams TM (2012) The dive response is exercise modulated to maximize aerobic dive duration. J Comp Physiol A 198:583–591CrossRefGoogle Scholar
  22. Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced hypoxaemia in healthy human subjects at sea level. J Physiol 355:161–175PubMedPubMedCentralCrossRefGoogle Scholar
  23. Denison DM, Kooyman GL (1973) The structure and function of the small airways in pinniped and sea otter lungs. Respir Physiol 17:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  24. Denison DM, Warrell DA, West JB (1971) Airway structure and alveolar emptying in the lungs of sea lions and dogs. Respir Physiol 13:253–260PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dennison S, Moore MJ, Fahlman A, Moore K, Sharp S, Harry CT, Hoppe J, Niemeyer M, Lentell B, Wells RS (2011) Bubbles in live-stranded dolphins. Proc R Soc B.
  26. Dhindsa DS, Metcalfe J, Hoversland AS, Hartman RA (1974) Comparative studies of the respiratory functions of mammalian blood X. Killer whale (Orcinus orca linnaeus) and beluga whale (Delphinapterus leucas). Respir Physiol 20:93–103PubMedCrossRefGoogle Scholar
  27. Eckenhoff RG, Olstad CS, Carrod G (1990) Human dose-response relationship for decompression and endogenous bubble formation. J Appl Physiol 69:914–918PubMedCrossRefGoogle Scholar
  28. Elsner R, Shurley JT, Hammond DD, Brooks RE (1970) Cerebral tolerance to hypoxemia in asphyxiated Weddell seals. Respir Physiol 9:287–297PubMedCrossRefGoogle Scholar
  29. Fahlman A, Hooker SK, Olszowkac A, Bostromd BL Jones DR (2009) Estimating the effect of lung collapse and pulmonary shunt on gas exchange during breath-hold diving: the Scholander and Kooyman legacy. Respir Physiol Neurobiol 165:28–39PubMedCrossRefGoogle Scholar
  30. Fahlman A, Tyack PL, Miller PJO, Kvadsheim PH (2014) How man-made interference might cause gas bubble emboli in deep diving whales. Front Physiol 5:1–6Google Scholar
  31. Fahlman A, Loring SH, Levine G, Rocho-Levine J, Austin T, Brodsky M (2015) Lung mechanics and pulmonary function testing in cetaceans. J Exp Biol 218(670):2030–2038PubMedCrossRefGoogle Scholar
  32. Falke KJ, Hill RD, Qvist J, Schneider RC, Guppy M, Liggins GC, Hochachka PW, Elliott RE, Zapol WM (1985) Seal lungs collapse during free diving: evidence from arterial nitrogen tensions. Science 229:556–558PubMedCrossRefGoogle Scholar
  33. Fanning JC, Harrison RJ (1974) The structure of the trachea and lungs of the South Australian bottle-nosed dolphin. In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 2. Academic Press, London, pp 231–252Google Scholar
  34. Fernandez A, Edwards JF, Rodriguez F, Espinosa de los Monteros A, Herraez P, Castro P, Jaber JR, Martin V, Arbelo M (2005) ‘Gas and fat embolic syndrome’ involving a mass stranding of beaked whales (family Ziphiidae) exposed to anthropogenic sonar signals. Vet Pathol 42:446–457PubMedCrossRefPubMedCentralGoogle Scholar
  35. Ferrigno M, Lundgren CEG (1999) Human breath-hold diving. In: Lundgren CEG, Miller JN (eds) The lung at depth. Marcel Dekker, Inc, New York, pp 529–577Google Scholar
  36. Fitz-Clarke JR (2007) Mechanics of airway and alveolar collapse in human breath-hold diving. Respir Physiol Neurobiol 159:202–210PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fitz-Clarke JR (2009) Risk of decompression sickness in extreme human breath-hold diving. Undersea Hyperb Med 36:83–91PubMedPubMedCentralGoogle Scholar
  38. Foot NJ, Orgeig S, Daniels CB (2006) The evolution of a physiological system: the pulmonary surfactant system in diving mammals. Respir Physiol Neurobiol 154:118–138PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gehr P, Mwangi DK, Ammann A, Maloiy GMO, Taylor CR, Weibel ER (1981) Design of the mammmalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to total body mass: wild and domestic mammals. Respir Physiol 44:61–86PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gibbs A, Somero GN (1990) Pressure adaptation of teleost gill Na+ /K+ −adenosine triphosphatase: role of the lipid and protein moieties. J Comp Physiol B 160:431–439CrossRefGoogle Scholar
  42. Goudappel JR, Slijper EJ (1958) Microscopic structure of the lungs of the bottlenose whale. Nature 4633:479CrossRefGoogle Scholar
  43. Graham RT, Roberts CM, Smart JCR (2006) Diving behaviour of whale sharks in relation to a predictable food pulse. J R Soc Interface 3:109–116PubMedCrossRefPubMedCentralGoogle Scholar
  44. Green AA, Redfield AC (1933) On the respiratory function of the blood of the porpoise. Biol Bull 64:44–52CrossRefGoogle Scholar
  45. Gross M, Jaenicke R (1994) Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem 221:617–630PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hall JE (2016) Guyton and Hall textbook of medical physiology, 13th edn. Elesvier, Philadelphia, PA, Inc., 1, pp 145Google Scholar
  47. Halsey MJ (1982) Effects of high pressure on the central nervous system. Physiol Rev 62:1341–1377PubMedCrossRefPubMedCentralGoogle Scholar
  48. Harvey EN, McElroy WD, Whiteley AH, Warren GH, Pease DC (1944) Bubble formation in animals. III. An analysis of gas tension and hydrostatic pressure in cats. J Cell Comp Physiol 24:117–132CrossRefGoogle Scholar
  49. Henk WG, Haldman JT (1990) Microanatomy of the lung of the bowhead whale Balaena mysticetus. Anat Rec 226:187–197PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hooker SK, Baird RW (1999) Deep-diving behaviour of the northern bottlenose whale, Hyperoodon ampullatus (Cetacea: Ziphiidae). Proc R Soc Lond B: Biol Sci 266:671–676CrossRefGoogle Scholar
  51. Hooker SK, Baird RW, Fahlman A (2009) Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus. Respir Physiol Neurobiol 167:235–246PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hooker SK, Fahlman A, Moore MJ, Aguilar de Soto N, Bernaldo de Quiros Y, Brubakk AO, Costa DP, Costidis AM. Dennison S, Falke KJ, Fernandez A, Ferrigno M, Fitz-Clarke JR, Garner MM, Houser DS, Jepson PD, Ketten RD, Kvadsheim PH, Madsen PT, Pollock NW, Rotstein DS, Rowles TK, Simmons SE, Van Bonn W, Weathersby PK, Weise MJ, Williams TM, Tyack PL (2011) Deadly diving? Physiological and behavioural management of decompression stress in diving mammals. Proc R Soc B.
  53. Hooker SK, Miller PJO, Johnson M, Cox OP, Boyd I (2005) Ascent exhalations of Antarctic fur seals: a behavioural adaptation for breath-hold diving? Proc R Soc Lond B 272:355–363CrossRefGoogle Scholar
  54. Houser DS, Howard R, Ridgway S (2001) Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals? J Theor Biol 213:183–195PubMedCrossRefPubMedCentralGoogle Scholar
  55. Houser DS, Dankiewicz-Talmadge LA, Stockard TK, Ponganis PJ (2010) Investigation of the potential for vascular bubble formation in a repetitively diving dolphin. J Exp Biol 213:52–62PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hui CA (1975) Thoracic collapse as affected by the retia thoracica in the dolphin. Respir Physiol 25:63–70PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hunter WL, Bennett PB (1974) The causes, mechanisms and prevention of high pressure nervous syndrome. Undersea Biomed Res 1:1–28Google Scholar
  58. Irving L (1935) The protection of whales from the danger of caisson disease. Science 81:560–561PubMedCrossRefPubMedCentralGoogle Scholar
  59. Irving L, Scholander PF, Grinnell SW (1941) The respiration of the porpoise, Tursiops truncatus. J Cell Comp Physiol 17:145–168CrossRefGoogle Scholar
  60. Jepson PD, Arbelo M, Deaville R, Patterson IAP, Castro P, Baker JR, Degollada E, Ross HM, Herráez P, Pocknell AM, Rodríguez F, Howie FE, Espinosa A, Reid RJ, Jaber JR, Martin V, Cunningham AA, Fernández A (2003) Gas-bubble lesions in stranded cetaceans. Nature 425:575–576PubMedCrossRefPubMedCentralGoogle Scholar
  61. Karandeeva OG, Matisheva SK, Shapunova VM (1973) Features of external respiration in the Delphinidae. In: Chapskii KK, Sokolov VE (eds) Morphology and ecology of marine mammals: seals, dolphins, porpoises. Wiley, New York, pp 196–206Google Scholar
  62. Kiessling RL, Maag CH (1962) Performance impairment as a function of nitrogen narcosis. J Appl Psychol 46:91–95CrossRefGoogle Scholar
  63. Klatsky LJ, Wells RS, Sweeney JC (2007) Offshore bottlenose dolphins (Tursiops truncatus) movement and dive behavior near the Bermuda Pedestal. J Mammal 88:59–66CrossRefGoogle Scholar
  64. Kohshi K, Wong RM, Abe H, Katoh T, Okudera T, Mano Y (2005) Neurological manifestations in Japanese Ama divers. Undersea Hyperb Med 32:11–20PubMedPubMedCentralGoogle Scholar
  65. Kooyman GL (1972) Deep diving behaviour and effects of pressure in reptiles, birds, and mammals. In: Sleigh MA, MacDonald AG (eds) The effects of pressure on organisms, Symp Soc Exp Biol No. 26. Cambridge University Press, London, pp 295–312Google Scholar
  66. Kooyman GL (1973) Respiratory adaptions in marine mammals. Integr Comp Biol 13:457–468Google Scholar
  67. Kooyman GL (1988) Pressure and the diver. Can J Zool 66:84–88CrossRefGoogle Scholar
  68. Kooyman GL (1989) Diverse divers: physiology and behavior. Springer, Berlin, p 200CrossRefGoogle Scholar
  69. Kooyman GL, Andersen HT (1969) Deep diving. In: Andersen HT (ed) The biology of marine mammals. Academic Press, New York, pp 65–94Google Scholar
  70. Kooyman GL, Cornell LH (1981) Flow properties of expiration and inspiration in a trained bottle-nosed porpoise. Physiol Zool 54:55–61CrossRefGoogle Scholar
  71. Kooyman GL, Hammond DD, Schroeder JP (1970) Bronchograms and tracheograms of seals under pressure. Science 169:82–84PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kooyman GL, Kerem DH, Campbell WB, Wright JJ (1971) Pulmonary function in freely diving Weddell seals, Leptonychotes weddelli. Respir Physiol 12:271–282CrossRefGoogle Scholar
  73. Kooyman GL, Kerem DH, Campbell WB, Wright JJ (1973) Pulmonary gas exchange in freely diving Weddell seals, Leptonychotes weddelli. Respir Physiol 17:283–290PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kooyman GL, Schroeder JP, Denison DM, Hammond DD, Wright JJ, Bergman WP (1972) Blood nitrogen tensions of seals during simulated deep dives. Am J Phys 223:1016–1020CrossRefGoogle Scholar
  75. Kooyman GL, Sinnett EE (1979) Mechanical properties of the harbor porpoise lung, Phoceona phocoena. Respir Physiol 36:287–300PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kooyman GL, Sinnett EE (1982) Pulmonary shunts in harbor seals and sea lions during simulated dives to depth. Physiol Zool 55:105–111CrossRefGoogle Scholar
  77. Kvadsheim PH, Miller PJO, Tyack PL, Sivle LLD, Lam FPA, Fahlman A (2012) Estimated tissue and blood N2 levels and risk of in vivo bubble formation in deep-, intermediate- and shallow diving toothed whales during exposure to naval sonar. Front Physiol 3:1–14CrossRefGoogle Scholar
  78. Kylstra JA, Nantz R, Crowe J, Wagner W, Saltzman HA (1967) Hydraulic compression of mice to 166 atmospheres. Science 158:793–794PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lanphier EH (1965) Application of decompression tables to repeated breath-hold dives. In: Rahn H, Yokoyama T (eds) Physiology of breath-hold diving and the Ama of Japan. National Academy of Sciences, National Research Council, Washington, DC, pp 225–234Google Scholar
  80. Lenfant C, Johansen K, Torrance JD (1970) Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir Physiol 9:277–286CrossRefGoogle Scholar
  81. Marsh H (1977) The alimentary canal of the dugong. Bull Aust Mamm Soc 4:32Google Scholar
  82. McCormick JG, Wever EG, Palin J, Ridgway SH (1970) Sound conduction in the dolphin ear. J Acoust Soc Am 48:1418–1428CrossRefGoogle Scholar
  83. McDonald BI, Ponganis PJ (2012) Lung collapse in the diving sea lion: hold the nitrogen and save the oxygen. Biol Lett 8:1047–1049PubMedPubMedCentralCrossRefGoogle Scholar
  84. Miller PJO, Johnson MP, Tyack PL, Terray EA (2004) Swimming gaits, passive drag and buoyancy of diving sperm whales. Physeter macrocephalus. J Exp Biol 207:1953–1967.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Moore M, Early GA (2004) Cumulative sperm whale bone damage and the bends. Science 306:2215PubMedCrossRefPubMedCentralGoogle Scholar
  86. Mortola JP, Limoges M (2006) Resting breathing frequency in aquatic mammals: a comparative analysis with terrestrial species. Respir Physiol Neurobiol 154:500–514PubMedCrossRefGoogle Scholar
  87. Mortola JP, Seguin J (2009) End-tidal CO2 in some aquatic mammals of large size. Zoology 112:77–85PubMedCrossRefPubMedCentralGoogle Scholar
  88. Nagel EL, Morgane PJ, McFarland WL, Galliano RE (1968) Rete mirabile of dolphin: its pressure-damping effect on cerebral circulation. Science 161:898–899PubMedCrossRefPubMedCentralGoogle Scholar
  89. Odend’hal S, Poulter TC (1966) Pressure regulation in the middle ear cavity of sea lions: a possible mechanism. Science 153:768–769PubMedCrossRefPubMedCentralGoogle Scholar
  90. Olsen CR, Hale FC, Elsner R (1969) Mechanics of ventilation in the pilot whale. Respir Physiol 7:131–149CrossRefGoogle Scholar
  91. Parkos CA, Wahrenbrock EA (1987) Acute effects of hypercapnia and hypoxia on minute ventilation in unrestrained Weddell seals. Respir Physiol 67:197–207CrossRefGoogle Scholar
  92. Parraga DG, Moore M, Fahlman A (2018) Pulmonary ventilation–perfusion mismatch: a novel hypothesis for how diving vertebrates may avoid the bends. Proc R Soc B 285:20180482CrossRefGoogle Scholar
  93. Paulev P (1965) Decompression sickness following repeated breathhold dives. J Appl Physiol 20:1028–1031PubMedCrossRefPubMedCentralGoogle Scholar
  94. Piérard J (1969) Le larynx du phoque de Weddell (Leptonychotes weddelli, Lesson, 1826). Can J Zool 47:77–87PubMedCrossRefPubMedCentralGoogle Scholar
  95. Piscitelli MA, McLellan WA, Rommel SA, Blum JE, Barco SG, Pabst DA (2010) Lung size and thoracic morphology in shallow and deep-diving cetaceans. J Morphol 271:654–673PubMedPubMedCentralGoogle Scholar
  96. Piscitelli MA, Raverty SA, Lillie MA, Shadwick RE (2013) A review of cetacean lung morphology and mechanics. J Morphol 274:1425–1440PubMedCrossRefGoogle Scholar
  97. Ponganis PJ, Kooyman GL, Castellini MA (1993) Determinants of the aerobic dive limit of Weddell seals: analysis of diving metabolic rates, postdive end tidal PO2’s, and blood and muscle oxygen stores. Physiol Zool 66:732–749CrossRefGoogle Scholar
  98. Purves PE, van Utrecht WL (1963) The anatomy and function of the ear of the bottle-nose dolphin Tursiops truncatus. Beaufortia 9:241–256Google Scholar
  99. Qvist J, Hill RD, Schneider RC, Falke KJ, Liggins GC, Guppy M, Elliot RL, Hochachka PW, Zapol WM (1986) Hemoglobin concentrations and blood gas tensions of freediving Weddell seals. J Appl Physiol 61:1560–1569CrossRefGoogle Scholar
  100. Ridgway SH (1972) Homeostasis in the aquatic environment. In: Ridgway SH (ed) Mammals of the sea: biology and medicine. Charles C. Thomas Publisher, Springfield, pp 590–747Google Scholar
  101. Ridgway SH (1983) Dolphin hearing and sound production in health and illness. In: Fay RR, Gourevitch G (eds) Hearing and other senses: presentations in honor of EG Weller. Amphora Press, Gronton, pp 247–296Google Scholar
  102. Ridgway SH (1986) Diving by cetaceans. In: Brubakk AC, Kanwisher JW, Sundness G (eds) Diving in animals and man. The Royal Norwegian Society of Science and Letters, Trondheim, pp 33–62Google Scholar
  103. Ridgway SH, Bowers CA, Miller D, Schultz ML, Jacobs CA, Dooley CA (1984) Diving and blood oxygen in the white whale. Can J Zool 62:2349–2235CrossRefGoogle Scholar
  104. Ridgway SH, Howard R (1979) Dolphin lung collapse and intramuscular circulation during free diving: evidence from nitrogen washout. Sci 206:1182–1183CrossRefGoogle Scholar
  105. Ridgway SH, Scronce BL, Kanwisher J (1969) Respiration and deep diving in the bottlenose porpoise. Sci 166:1651–1654CrossRefGoogle Scholar
  106. Robinson JA, Kropatkin M, Aggeler PM (1969) Hageman factor (factor XII) deficiency in marine mammals. Science 166:1420–1422PubMedCrossRefGoogle Scholar
  107. Roth SH (1979) Physical mechanisms of anesthesia. Annu Rev Pharmacol Toxicol 19:159–178PubMedCrossRefGoogle Scholar
  108. Rothschild BM (1987) Decompression syndrome in fossil marine turtles. Ann Carnegie Mus 56:253–258Google Scholar
  109. Rothschild BM (2005) What causes lesions in sperm whale bones? Science 308:631–632PubMedCrossRefPubMedCentralGoogle Scholar
  110. Rothschild B, Martin LD (1987) Avascular necrosis: occurrence in diving Cretaceous mosasaurs. Science 236:75–77PubMedCrossRefPubMedCentralGoogle Scholar
  111. Rothschild BM, Storrs GW (2003) Decompression syndrome in plesiosaurs (Sauropterygia: Reptilia). J Vertebr Paleontol 23:324–328CrossRefGoogle Scholar
  112. Schaefer KE, Allison RD, Dougherty JH, Carey CR, Walker R, Yost F, Parker D (1968) Pulmonary and circulatory adjustments determining the limits of depths in breathhold diving. Science 162:1020–1023PubMedCrossRefGoogle Scholar
  113. Schipke JD, Gams E, Kallweit O (2006) Decompression sickness following breath-hold diving. Res Sports Med 14:163–178PubMedCrossRefPubMedCentralGoogle Scholar
  114. Scholander PF (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hval Skrif, Norske Videnskamp-Akad, Oslo 22:1–131Google Scholar
  115. Scholander PF, Irving L (1941) Experimental investigations on the respiration and diving of the Florida manatee. J Cell Comp Physiol 17:169–191CrossRefGoogle Scholar
  116. Schorr GS, Falcone EA, Moretti DJ, Andrews RD (2014) First long-term behavioral records from Cuvier’s beaked whales (Ziphius cavirostris) reveal record-breaking dives. PLoS One 9:e92633. CrossRefPubMedPubMedCentralGoogle Scholar
  117. Siebenaller JF (1984) Structural comparison of lactate dehydrogenase homologs differing in sensitivity to hydrostatic pressure. Biochem Biophys Acta 786:161–169PubMedPubMedCentralGoogle Scholar
  118. Skinner LA, Milsom WK (2004) Respiratory chemosensitivity during wake and sleep in harbour seal pups (Phoca vitulina richardsii). Physiol Biochem Zool 77:847–863CrossRefGoogle Scholar
  119. Slijper E (1962) Whales. Hutchinson, London, p 511Google Scholar
  120. Snipes RL (1984) Anatomy of the cecum of the West Indian manatee, Trichechus manatus (Mammalia, Sirenia). Zoomorph 104:67–78CrossRefGoogle Scholar
  121. Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577PubMedCrossRefPubMedCentralGoogle Scholar
  122. Soto NA, Johnson MP, Madsen PT, Díaz F, Domínguez I, Brito A, Tyack P (2008) Cheetahs of the deep sea: deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). J Anim Ecol 77:936–947CrossRefGoogle Scholar
  123. Spragg RG, Ponganis PJ, Marsh JJ, Rau GA, Bernhard W (2004) Surfactant from diving aquatic mammals. J Appl Physiol 96:1626–1632PubMedCrossRefPubMedCentralGoogle Scholar
  124. Stahl WR (1967) Scaling of respiratory variables in mammals. J Appl Physiol 22:453–460PubMedPubMedCentralCrossRefGoogle Scholar
  125. Stephenson R (2005) Physiological control of diving behaviour in the Weddell seal Leptonychotes weddelli: a model based on cardiorespiratory control theory. J Exp Biol 208:1971–1991PubMedCrossRefPubMedCentralGoogle Scholar
  126. Tarasoff FJ, Kooyman GL (1973) Observations on the anatomy of the respiratory system of the river otter, sea otter and harp seal. I. The topography, weight and measurements of the lungs. Can J Zool 51:163–170PubMedPubMedCentralCrossRefGoogle Scholar
  127. Tenney SM, Remmers JE (1963) Comparative quantitative morphology of the mammalian lung diffusing area. Nature 197:54–56PubMedCrossRefPubMedCentralGoogle Scholar
  128. Terasawa F, Ohizumi H, Ohshita I (2010) Effect of breath-hold on blood gas analysis in captive Pacific white-sided dolphins (Lagenorhynchus obliquidens). J Vet Med Sci 72:1221–1224PubMedCrossRefPubMedCentralGoogle Scholar
  129. Tyack PL, Johnson M, Soto NA, Sturlese A, Madsen PY (2006) Extreme diving of beaked whales. J Exp Biol 209:4238–4253PubMedPubMedCentralCrossRefGoogle Scholar
  130. Van Elk CE, Epping N, Gans SJM (2001) Pulmonary function measurements in dolphins using capnography. Vet Rec 149:308–309PubMedCrossRefPubMedCentralGoogle Scholar
  131. Viamonte M, Morgane PJ, Galliano RE, Nagal EL, McFarland WL (1968) Angiography in the living dolphin and observations on blood supply to the brain. Am J Phys 214:1225–1249CrossRefGoogle Scholar
  132. Vogl AW, Fisher HD (1982) Arterial retia related to supply of the central nervous system in two small toothed whales – narwhal (Monodon monoceros) and beluga (Delphinapterus leucas). J Morphol 174:41–56PubMedCrossRefPubMedCentralGoogle Scholar
  133. Wann KT, MacDonald AG (1980) The effects of pressure on excitable cells. Comp Biochem Physiol 66A:1–12CrossRefGoogle Scholar
  134. West JB (2012) Respiratory physiology: the essentials. Lippincott, Williams and Wilkins, Philadelphia, p 200Google Scholar
  135. West JB, Lahiri S, Maret KH, Peters RM Jr, Pizzo CJ (1983) Barometric pressures at extreme altitudes on Mt. Everest: physiological significance. J Appl Physiol Respir Environ Exercise Physiol 54:1188–1194Google Scholar
  136. Williams TM, Haun JE, Friedl WA (1999) The diving physiology of bottlenose dolphins (Tursiops truncatus) I. Balancing the demands of exercise for energy conservation at depth. J Exp Biol 202:2739–2748PubMedPubMedCentralGoogle Scholar
  137. Wislocki GB, Belanger LF (1940) The lungs of the larger cetacea compared to those of smaller species. Biol Bull 78:289–297CrossRefGoogle Scholar
  138. Zimmer WMX, Tyack PL (2007) Repetitive shallow dives pose decompression risk in deep-diving beaked whales. Mar Mamm Sci 23:888–925CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Randall W. Davis
    • 1
  1. 1.Marine BiologyTexas A&M UniversityGalvestonUSA

Personalised recommendations