Simulation in Urology

  • Wesley Baas
  • Bradley SchwartzEmail author
Part of the Comprehensive Healthcare Simulation book series (CHS)


In this chapter we have discussed simulation in urology. This relatively new field is an exciting avenue exploring the possibility of allowing trainees to learn new skills and procedures in a controlled environment that does not jeopardize patient health. This is particularly important as the technologies available to urologists are constantly advancing and practicing urologists are finding themselves having to learn procedures outside of their traditional training. In this chapter we discussed simulators specific to cystoscopy, ureteroscopy, transurethral treatments of BPH, percutaneous procedures, laparoscopy, robotics, and open urologic procedures. As the field continues to grow, we expect new and exciting ways to educate trainees, particularly with the use of simulation.


Urology Urologists Simulation in urology Cystoscopy Ureteroscopy Laparoscopy Robotics 


  1. 1.
    Preece R. The current role of simulation in urological training. Cent Eur J Urol. 2015;68:207–11.CrossRefGoogle Scholar
  2. 2.
    Scott DJ, Dunnington GL. The new ACS/APDS skills curriculum: moving the learning curve out of the operating room. J Gastrointest Surg. 2008;12:213–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Aggarwal R, Darzi A. Technical-skills training in the 21st century. N Engl J Med. 2006;355:2695–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Aydin A, Ahmed K, Shafi AM, Khan MS, Dasgupta P. The role of simulation in urological training – a quantitative study of practice and opinions. Surgeon. 2016;14(6):301–7. Epub 2015 Jul 4. PMID: 26148761.
  5. 5.
    Noureldin YA, Sweet RM. A call for a shift in theory and terminology for validation studies in urological education. J Urol. 2018;199(3):617–20. Epub 2017 Oct 20. PMID: 29061542.
  6. 6.
    Shah J. Endoscopy through the ages. BJU Int. 2002;89:645–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Michel MS, Knoll T, Kohrmann KU, Alken P. The URO Mentor: development and evaluation of a new computer-based interactive training system for virtual life-like simulation of diagnostic and therapeutic endourological procedures. BJU Int. 2002;89:174–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Schout BM, Muijtjens AM, Hendrikx AJ, et al. Acquisition of flexible cystoscopy skills on a virtual reality simulator by experts and novices. BJU Int. 2010;105:234–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Schout BM, Ananias HJ, Bemelmans BL, et al. Transfer of cysto-urethroscopy skills from a virtual-reality simulator to the operating room: a randomized controlled trial. BJU Int. 2010;106:226–31; discussion 31.CrossRefPubMedGoogle Scholar
  10. 10.
    Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. The effect of bench model fidelity on endourological skills: a randomized controlled study. J Urol. 2002;167:1243–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Bowling CB, Greer WJ, Bryant SA, et al. Testing and validation of a low-cost cystoscopy teaching model: a randomized controlled trial. Obstet Gynecol. 2010;116:85–91.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jancke G, Rosell J, Jahnson S. Impact of surgical experience on recurrence and progression after transurethral resection of bladder tumour in non-muscle-invasive bladder cancer. Scand J Urol. 2014;48:276–83.CrossRefPubMedGoogle Scholar
  14. 14.
    Schout BM, Bemelmans BL, Martens EJ, Scherpbier AJ, Hendrikx AJ. How useful and realistic is the uro trainer for training transurethral prostate and bladder tumor resection procedures? J Urol. 2009;181:1297–303; discussion 303.CrossRefPubMedGoogle Scholar
  15. 15.
    Kruck S, Bedke J, Hennenlotter J, et al. Virtual bladder tumor transurethral resection: an objective evaluation tool to overcome learning curves with and without photodynamic diagnostics. Urol Int. 2011;87:138–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Reich O, Noll M, Gratzke C, et al. High-level virtual reality simulator for endourologic procedures of lower urinary tract. Urology. 2006;67:1144–8.CrossRefPubMedGoogle Scholar
  17. 17.
    de Vries AH, van Genugten HG, Hendrikx AJ, et al. The Simbla TURBT simulator in urological residency training: from needs analysis to validation. J Endourol/Endourol Soc. 2016;30:580–7.CrossRefGoogle Scholar
  18. 18.
    Shen Y, Vasandani P, Iyer J, et al. Virtual trainer for intra-detrusor injection of botulinum toxin to treat urinary incontinence. Stud Health Technol Inform. 2012;173:457–62.PubMedGoogle Scholar
  19. 19.
    Wignall GR, Denstedt JD, Preminger GM, et al. Surgical simulation: a urological perspective. J Urol. 2008;179:1690–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Sweet R, Porter J, Oppenheimer P, Hendrickson D, Gupta A, Weghorst S. Simulation of bleeding in endoscopic procedures using virtual reality. J Endourol/Endourol Soc. 2002;16:451–5.CrossRefGoogle Scholar
  21. 21.
    Hammond L, Ketchum J, Schwartz BF. Accreditation council on graduate medical education technical skills competency compliance: urologic surgical skills. J Am Coll Surg. 2005;201:454–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Brewin J, Ahmed K, Khan MS, Jaye P, Dasgupta P. Face, content, and construct validation of the Bristol TURP trainer. J Surg Educ. 2014;71:500–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Viswaroop SB, Gopalakrishnan G, Kandasami SV. Role of transurethral resection of the prostate simulators for training in transurethral surgery. Curr Opin Urol. 2015;25:153–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Lardennois B, Clement T, Ziade A, Brandt B. Computer stimulation of endoscopic resection of the prostate. Ann Urol. 1990;24:519–23.Google Scholar
  25. 25.
    Oppenheimer P, Gupta A, Weghorst S, Sweet R, Porter J. The representation of blood flow in endourologic surgical simulations. Stud Health Technol Inform. 2001;81:365–71.PubMedGoogle Scholar
  26. 26.
    Sweet RM. Review of trainers for transurethral resection of the prostate skills. J Endourol/Endourol Soc. 2007;21:280–4.CrossRefGoogle Scholar
  27. 27.
    Kallstrom R, Hjertberg H, Svanvik J. Construct validity of a full procedure, virtual reality, real-time, simulation model for training in transurethral resection of the prostate. J Endourol/Endourol Soc. 2010;24:109–15.CrossRefGoogle Scholar
  28. 28.
    Khan R, Aydin A, Khan MS, Dasgupta P, Ahmed K. Simulation-based training for prostate surgery. BJU Int. 2015;116:665–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Bright E, Vine S, Wilson MR, Masters RS, McGrath JS. Face validity, construct validity and training benefits of a virtual reality TURP simulator. Int J Surg (London, England). 2012;10:163–6.CrossRefGoogle Scholar
  30. 30.
    Zhu H, Zhang Y, Liu JS, Wang G, Yu CF, Na YQ. Virtual reality simulator for training urologists on transurethral prostatectomy. Chin Med J. 2013;126:1220–3.PubMedGoogle Scholar
  31. 31.
    Bachmann A, Muir GH, Collins EJ, et al. 180-W XPS GreenLight laser therapy for benign prostate hyperplasia: early safety, efficacy, and perioperative outcome after 201 procedures. Eur Urol. 2012;61:600–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Liberale F, Muir GH, Walsh K, Krishnamoorthy R. GreenLight laser prostatectomy: a safe and effective treatment for bladder outlet obstruction by prostate cancer. BJU Int. 2011;107:772–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Malek RS, Barrett DM, Kuntzman RS. High-power potassium-titanyl-phosphate (KTP/532) laser vaporization prostatectomy: 24 hours later. Urology. 1998;51:254–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Malek RS, Kuntzman RS, Barrett DM. Photoselective potassium-titanyl-phosphate laser vaporization of the benign obstructive prostate: observations on long-term outcomes. J Urol. 2005;174:1344–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Aydin A, Muir GH, Graziano ME, Khan MS, Dasgupta P, Ahmed K. Validation of the GreenLight simulator and development of a training curriculum for photoselective vaporisation of the prostate. BJU Int. 2015;115:994–1003.CrossRefPubMedGoogle Scholar
  36. 36.
    Herlemann A, Strittmatter F, Buchner A, et al. Virtual reality systems in urologic surgery: an evaluation of the GreenLight simulator. Eur Urol. 2013;64:687–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Kuntz RM. Current role of lasers in the treatment of benign prostatic hyperplasia (BPH). Eur Urol. 2006;49:961–9.CrossRefPubMedGoogle Scholar
  38. 38.
    van Rij S, Gilling PJ. In 2013, holmium laser enucleation of the prostate (HoLEP) may be the new 'gold standard'. Curr Urol Rep. 2012;13:427–32.CrossRefPubMedGoogle Scholar
  39. 39.
    El-Hakim A, Elhilali MM. Holmium laser enucleation of the prostate can be taught: the first learning experience. BJU Int. 2002;90:863–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Shah HN, Mahajan AP, Sodha HS, Hegde S, Mohile PD, Bansal MB. Prospective evaluation of the learning curve for holmium laser enucleation of the prostate. J Urol. 2007;177:1468–74.CrossRefPubMedGoogle Scholar
  41. 41.
    Aydin A, Ahmed K, Brewin J, Khan MS, Dasgupta P, Aho T. Face and content validation of the prostatic hyperplasia model and holmium laser surgery simulator. J Surg Educ. 2014;71:339–44.CrossRefPubMedGoogle Scholar
  42. 42.
    Kuronen-Stewart C, Ahmed K, Aydin A, et al. Holmium laser enucleation of the prostate: simulation-based training curriculum and validation. Urology. 2015;86:639–46.CrossRefPubMedGoogle Scholar
  43. 43.
    Gallina A, Suardi N, Montorsi F, et al. Mortality at 120 days after prostatic biopsy: a population-based study of 22,175 men. Int J Cancer. 2008;123:647–52.CrossRefPubMedGoogle Scholar
  44. 44.
    Kakehi Y, Naito S. Complication rates of ultrasound-guided prostate biopsy: a nation-wide survey in Japan. Int J Urol. 2008;15:319–21.CrossRefPubMedGoogle Scholar
  45. 45.
    Chalasani V, Cool DW, Sherebrin S, Fenster A, Chin J, Izawa JI. Development and validation of a virtual reality transrectal ultrasound guided prostatic biopsy simulator. Can Urol Assoc J (Journal de l’Association des urologues du Canada). 2011;5:19–26.CrossRefGoogle Scholar
  46. 46.
    Fiard G, Selmi SY, Promayon E, Vadcard L, Descotes JL, Troccaz J. Initial validation of a virtual-reality learning environment for prostate biopsies: realism matters! J Endourol/Endourol Soc. 2014;28:453–8.CrossRefGoogle Scholar
  47. 47.
    Dauw CA, Simeon L, Alruwaily AF, et al. Contemporary practice patterns of flexible ureteroscopy for treating renal stones: results of a worldwide survey. J Endourol/Endourol Soc. 2015;29:1221–30.CrossRefGoogle Scholar
  48. 48.
    Ghani KR, Sammon JD, Karakiewicz PI, et al. Trends in surgery for upper urinary tract calculi in the USA using the Nationwide Inpatient Sample: 1999–2009. BJU Int. 2013;112:224–30.CrossRefPubMedGoogle Scholar
  49. 49.
    Skolarikos A, Gravas S, Laguna MP, Traxer O, Preminger GM, de la Rosette J. Training in ureteroscopy: a critical appraisal of the literature. BJU Int. 2011;108:798–805; discussion.Google Scholar
  50. 50.
    Kishore TA, Pedro RN, Monga M, Sweet RM. Assessment of validity of an OSATS for cystoscopic and ureteroscopic cognitive and psychomotor skills. J Endourol/Endourol Soc. 2008;22:2707–11.CrossRefGoogle Scholar
  51. 51.
    Brunckhorst O, Aydin A, Abboudi H, et al. Simulation-based ureteroscopy training: a systematic review. J Surg Educ. 2015;72:135–43.CrossRefPubMedGoogle Scholar
  52. 52.
    Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. A novel approach to endourological training: training at the surgical skills center. J Urol. 2001;166:1261–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Mishra S, Sharma R, Kumar A, Ganatra P, Sabnis RB, Desai MR. Comparative performance of high-fidelity training models for flexible ureteroscopy: are all models effective? Indian J Urol: IJU. 2011;27:451–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Argun OB, Chrouser K, Chauhan S, et al. Multi-institutional validation of an OSATS for the assessment of cystoscopic and ureteroscopic skills. J Urol. 2015;194:1098–105.CrossRefPubMedGoogle Scholar
  55. 55.
    Brehmer M, Tolley D. Validation of a bench model for endoscopic surgery in the upper urinary tract. Eur Urol. 2002;42:175–9; discussion 80.CrossRefPubMedGoogle Scholar
  56. 56.
    Brehmer M, Swartz R. Training on bench models improves dexterity in ureteroscopy. Eur Urol. 2005;48:458–63; discussion 63.CrossRefPubMedGoogle Scholar
  57. 57.
    White MA, Dehaan AP, Stephens DD, Maes AA, Maatman TJ. Validation of a high fidelity adult ureteroscopy and renoscopy simulator. J Urol. 2010;183:673–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Villa L, Somani BK, Sener TE, et al. Comprehensive flexible ureteroscopy (FURS) simulator for training in endourology: the K-box model. Cent Eur J Urol. 2016;69:118–20.Google Scholar
  59. 59.
    Preminger GM, Babayan RK, Merril GL, Raju R, Millman A, Merril JR. Virtual reality surgical simulation in endoscopic urologic surgery. Stud Health Technol Inform. 1996;29:157–63.PubMedGoogle Scholar
  60. 60.
    Watterson JD, Beiko DT, Kuan JK, Denstedt JD. Randomized prospective blinded study validating acquistion of ureteroscopy skills using computer based virtual reality endourological simulator. J Urol. 2002;168:1928–32.CrossRefPubMedGoogle Scholar
  61. 61.
    Wilhelm DM, Ogan K, Roehrborn CG, Cadeddu JA, Pearle MS. Assessment of basic endoscopic performance using a virtual reality simulator. J Am Coll Surg. 2002;195:675–81.CrossRefPubMedGoogle Scholar
  62. 62.
    Jacomides L, Ogan K, Cadeddu JA, Pearle MS. Use of a virtual reality simulator for ureteroscopy training. J Urol. 2004;171:320–3. discussion 3CrossRefPubMedGoogle Scholar
  63. 63.
    Matsumoto ED, Pace KT, D’A Honey RJ. Virtual reality ureteroscopy simulator as a valid tool for assessing endourological skills. Int J Urol. 2006;13:896–901.CrossRefPubMedGoogle Scholar
  64. 64.
    Dolmans VE, Schout BM, de Beer NA, Bemelmans BL, Scherpbier AJ, Hendrikx AJ. The virtual reality endourologic simulator is realistic and useful for educational purposes. J Endourol/Endourol Soc. 2009;23:1175–81.CrossRefGoogle Scholar
  65. 65.
    Ogan K, Jacomides L, Shulman MJ, Roehrborn CG, Cadeddu JA, Pearle MS. Virtual ureteroscopy predicts ureteroscopic proficiency of medical students on a cadaver. J Urol. 2004;172:667–71.CrossRefPubMedGoogle Scholar
  66. 66.
    Knoll T, Trojan L, Haecker A, Alken P, Michel MS. Validation of computer-based training in ureterorenoscopy. BJU Int. 2005;95:1276–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Watterson JD, Denstedt JD. Ureteroscopy and cystoscopy simulation in urology. J Endourol/Endourol Soc. 2007;21:263–9.CrossRefGoogle Scholar
  68. 68.
    Strohmaier WL, Giese A. Porcine urinary tract as a training model for ureteroscopy. Urol Int. 2001;66:30–2.CrossRefPubMedGoogle Scholar
  69. 69.
    Celia A, Zeccolini G. Ex vivo models for training in endourology: construction of the model and simulation of training procedures. Urologia. 2011;78(Suppl 18):16–20.CrossRefPubMedGoogle Scholar
  70. 70.
    Chou DS, Abdelshehid C, Clayman RV, McDougall EM. Comparison of results of virtual-reality simulator and training model for basic ureteroscopy training. J Endourol/Endourol Soc. 2006;20:266–71.CrossRefGoogle Scholar
  71. 71.
    Soria F, Morcillo E, Sanz JL, Budia A, Serrano A, Sanchez-Margallo FM. Description and validation of realistic and structured endourology training model. Am J Clin Exp Urol. 2014;2:258–65.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Fernstrom I, Johansson B. Percutaneous pyelolithotomy. A new extraction technique. Scand J Urol Nephrol. 1976;10:257–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Kim SC, Kuo RL, Lingeman JE. Percutaneous nephrolithotomy: an update. Curr Opin Urol. 2003;13:235–41.CrossRefPubMedGoogle Scholar
  74. 74.
    Michel MS, Trojan L, Rassweiler JJ. Complications in percutaneous nephrolithotomy. Eur Urol. 2007;51:899–906; discussion.CrossRefPubMedGoogle Scholar
  75. 75.
    Jang WS, Choi KH, Yang SC, Han WK. The learning curve for flank percutaneous nephrolithotomy for kidney calculi: a single surgeon’s experience. Korean J Urol. 2011;52:284–8.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ziaee SA, Sichani MM, Kashi AH, Samzadeh M. Evaluation of the learning curve for percutaneous nephrolithotomy. Urol J. 2010;7:226–31.PubMedGoogle Scholar
  77. 77.
    Bird VG, Fallon B, Winfield HN. Practice patterns in the treatment of large renal stones. J Endourol/Endourol Soc. 2003;17:355–63.CrossRefGoogle Scholar
  78. 78.
    Hammond L, Ketchum J, Schwartz BF. A new approach to urology training: a laboratory model for percutaneous nephrolithotomy. J Urol. 2004;172:1950–2.CrossRefPubMedGoogle Scholar
  79. 79.
    Strohmaier WL, Giese A. Ex vivo training model for percutaneous renal surgery. Urol Res. 2005;33:191–3.CrossRefPubMedGoogle Scholar
  80. 80.
    Zhang Y, Ou TW, Jia JG, et al. Novel biologic model for percutaneous renal surgery learning and training in the laboratory. Urology. 2008;72:513–6.CrossRefPubMedGoogle Scholar
  81. 81.
    Qiu Z, Yang Y, Zhang Y, Sun YC. Modified biological training model for percutaneous renal surgery with ultrasound and fluroscopy guidance. Chin Med J. 2011;124:1286–9.PubMedGoogle Scholar
  82. 82.
    Zhang Y, Yu CF, Jin SH, Li NC, Na YQ. Validation of a novel non-biological bench model for the training of percutaneous renal access. Int Braz J Urol. 2014;40:87–92.CrossRefPubMedGoogle Scholar
  83. 83.
    Stern J, Zeltser IS, Pearle MS. Percutaneous renal access simulators. J Endourol/Endourol Soc. 2007;21:270–3.CrossRefGoogle Scholar
  84. 84.
    Knudsen BE, Matsumoto ED, Chew BH, et al. A randomized, controlled, prospective study validating the acquisition of percutaneous renal collecting system access skills using a computer based hybrid virtual reality surgical simulator: phase I. J Urol. 2006;176:2173–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Park S, Matsumoto ED, Knudsen BE, et al. Face, content and construct validity testing on a virtual reality percutaneous renal access simulator. J Urol. 2006;176(5):2173–8.Google Scholar
  86. 86.
    Margulis V, Matsumoto E, Knudsen B, et al. Percutaneous renal collecting system access: can virtual reality training shorten the learning curve? J Urol. 2005;173:315.Google Scholar
  87. 87.
    Veneziano D, Smith A, Reihsen T, Speich J, Sweet RM. The SimPORTAL fluoro-less C-arm trainer: an innovative device for percutaneous kidney access. J Endourol/Endourol Soc. 2015;29:240–5.CrossRefGoogle Scholar
  88. 88.
    Blum CA, Adams DB. Who did the first laparoscopic cholecystectomy? J Minim Access Surg. 2011;7:165–8.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Figert PL, Park AE, Witzke DB, Schwartz RW. Transfer of training in acquiring laparoscopic skills. J Am Coll Surg. 2001;193:533–7.CrossRefPubMedGoogle Scholar
  90. 90.
    Brewin J, Nedas T, Challacombe B, Elhage O, Keisu J, Dasgupta P. Face, content and construct validation of the first virtual reality laparoscopic nephrectomy simulator. BJU Int. 2010;106:850–4.CrossRefPubMedGoogle Scholar
  91. 91.
    da Cruz JA, Dos Reis ST, Cunha Frati RM, et al. Does warm-up training in a virtual reality simulator improve surgical performance? A prospective randomized analysis. J Surg Educ. 2016;73:974–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Nagendran M, Toon CD, Davidson BR, Gurusamy KS. Laparoscopic surgical box model training for surgical trainees with no prior laparoscopic experience. Cochrane Database of Syst Rev. 2014:Cd010479.Google Scholar
  93. 93.
    Pitzul KB, Grantcharov TP, Okrainec A. Validation of three virtual reality Fundamentals of Laparoscopic Surgery (FLS) modules. Stud Health Technol Inform. 2012;173:349–55.PubMedGoogle Scholar
  94. 94.
    Derossis AM, Fried GM, Abrahamowicz M, Sigman HH, Barkun JS, Meakins JL. Development of a model for training and evaluation of laparoscopic skills. Am J Surg. 1998;175:482–7.CrossRefPubMedGoogle Scholar
  95. 95.
    Fried GM, Feldman LS, Vassiliou MC, et al. Proving the value of simulation in laparoscopic surgery. Ann Surg. 2004;240:518–25; discussion 25–8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Keyser EJ, Derossis AM, Antoniuk M, Sigman HH, Fried GM. A simplified simulator for the training and evaluation of laparoscopic skills. Surg Endosc. 2000;14:149–53.CrossRefPubMedGoogle Scholar
  97. 97.
    Sroka G, Feldman LS, Vassiliou MC, Kaneva PA, Fayez R, Fried GM. Fundamentals of laparoscopic surgery simulator training to proficiency improves laparoscopic performance in the operating room-a randomized controlled trial. Am J Surg. 2010;199:115–20.CrossRefPubMedGoogle Scholar
  98. 98.
    Smith R, Patel V, Satava R. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot Comput Assisted Surg: MRCAS. 2014;10:379–84.CrossRefGoogle Scholar
  99. 99.
    Munz Y, Kumar BD, Moorthy K, Bann S, Darzi A. Laparoscopic virtual reality and box trainers: is one superior to the other? Surg Endosc. 2004;18:485–94.CrossRefPubMedGoogle Scholar
  100. 100.
    Aslam A, Nason GJ, Giri SK. Homemade laparoscopic surgical simulator: a cost-effective solution to the challenge of acquiring laparoscopic skills? Ir J Med Sci. 2016;185(4):791–6. Epub 2015 Sep 16. PMID: 26377602.Google Scholar
  101. 101.
    Wilson MS, Middlebrook A, Sutton C, Stone R, McCloy RF. MIST VR: a virtual reality trainer for laparoscopic surgery assesses performance. Ann R Coll Surg Engl. 1997;79:403–4.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Debes AJ, Aggarwal R, Balasundaram I, Jacobsen MB. A tale of two trainers: virtual reality versus a video trainer for acquisition of basic laparoscopic skills. Am J Surg. 2010;199:840–5.CrossRefPubMedGoogle Scholar
  103. 103.
    Chaudhry A, Sutton C, Wood J, Stone R, McCloy R. Learning rate for laparoscopic surgical skills on MIST VR, a virtual reality simulator: quality of human-computer interface. Ann R Coll Surg Engl. 1999;81:281–6.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Gallagher AG, Lederman AB, McGlade K, Satava RM, Smith CD. Discriminative validity of the Minimally Invasive Surgical Trainer in Virtual Reality (MIST-VR) using criteria levels based on expert performance. Surg Endosc. 2004;18:660–5.CrossRefPubMedGoogle Scholar
  105. 105.
    Gallagher AG, Richie K, McClure N, McGuigan J. Objective psychomotor skills assessment of experienced, junior, and novice laparoscopists with virtual reality. World J Surg. 2001;25:1478–83.CrossRefPubMedGoogle Scholar
  106. 106.
    Gallagher AG, Satava RM. Virtual reality as a metric for the assessment of laparoscopic psychomotor skills. Learning curves and reliability measures. Surg Endosc. 2002;16:1746–52.CrossRefPubMedGoogle Scholar
  107. 107.
    Maithel S, Sierra R, Korndorffer J, et al. Construct and face validity of MIST-VR, Endotower, and CELTS: are we ready for skills assessment using simulators? Surg Endosc. 2006;20:104–12.CrossRefPubMedGoogle Scholar
  108. 108.
    McNatt SS, Smith CD. A computer-based laparoscopic skills assessment device differentiates experienced from novice laparoscopic surgeons. Surg Endosc. 2001;15:1085–9.CrossRefPubMedGoogle Scholar
  109. 109.
    Taffinder N, Sutton C, Fishwick RJ, McManus IC, Darzi A. Validation of virtual reality to teach and assess psychomotor skills in laparoscopic surgery: results from randomised controlled studies using the MIST VR laparoscopic simulator. Stud Health Technol Inform. 1998;50:124–30.PubMedGoogle Scholar
  110. 110.
    Ganai S, Donroe JA, St Louis MR, Lewis GM, Seymour NE. Virtual-reality training improves angled telescope skills in novice laparoscopists. Am J Surg. 2007;193:260–5.CrossRefPubMedGoogle Scholar
  111. 111.
    Schijven M, Jakimowicz J. Face-, expert, and referent validity of the Xitact LS500 laparoscopy simulator. Surg Endosc. 2002;16:1764–70.CrossRefPubMedGoogle Scholar
  112. 112.
    Schijven M, Jakimowicz J. Construct validity: experts and novices performing on the Xitact LS500 laparoscopy simulator. Surg Endosc. 2003;17:803–10.CrossRefPubMedGoogle Scholar
  113. 113.
    Schijven MP, Jakimowicz JJ. Introducing the Xitact LS500 laparoscopy simulator: toward a revolution in surgical education. Surg Technol Int. 2003;11:32–6.PubMedGoogle Scholar
  114. 114.
    Ayodeji ID, Schijven M, Jakimowicz J, Greve JW. Face validation of the Simbionix LAP mentor virtual reality training module and its applicability in the surgical curriculum. Surg Endosc. 2007;21:1641–9.CrossRefPubMedGoogle Scholar
  115. 115.
    Gurusamy KS, Aggarwal R, Palanivelu L, Davidson BR. Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev. 2009:Cd006575.Google Scholar
  116. 116.
    Hamilton EC, Scott DJ, Fleming JB, et al. Comparison of video trainer and virtual reality training systems on acquisition of laparoscopic skills. Surg Endosc. 2002;16:406–11.CrossRefPubMedGoogle Scholar
  117. 117.
    Dunn MD, Portis AJ, Shalhav AL, et al. Laparoscopic versus open radical nephrectomy: a 9-year experience. J Urol. 2000;164:1153–9.CrossRefPubMedGoogle Scholar
  118. 118.
    Gill IS, Kavoussi LR, Lane BR, et al. Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J Urol. 2007;178:41–6.CrossRefPubMedGoogle Scholar
  119. 119.
    Kerbl K, Clayman RV, McDougall EM, Kavoussi LR. Laparoscopic nephrectomy: the Washington University experience. Br J Urol. 1994;73:231–6.CrossRefPubMedGoogle Scholar
  120. 120.
    Tan HJ, Wolf JS Jr, Ye Z, Wei JT, Miller DC. Population-level comparative effectiveness of laparoscopic versus open radical nephrectomy for patients with kidney cancer. Cancer. 2011;117:4184–93.CrossRefPubMedGoogle Scholar
  121. 121.
    Fernandez A, Chen E, Moore J, et al. Preliminary assessment of a renal tumor materials model. J Endourol/Endourol Soc. 2011;25:1371–5.CrossRefGoogle Scholar
  122. 122.
    Fernandez A, Chen E, Moore J, et al. A phantom model as a teaching modality for laparoscopic partial nephrectomy. J Endourol/Endourol Soc. 2012;26:1–5.CrossRefGoogle Scholar
  123. 123.
    Abdelshehid CS, Quach S, Nelson C, et al. High-fidelity simulation-based team training in urology: evaluation of technical and nontechnical skills of urology residents during laparoscopic partial nephrectomy. J Surg Educ. 2013;70:588–95.CrossRefPubMedGoogle Scholar
  124. 124.
    Lee JY, Mucksavage P, McDougall EM. Simulating laparoscopic renal hilar vessel injuries: preliminary evaluation of a novel surgical training model for residents. J Endourol/Endourol Soc. 2012;26:393–7.CrossRefGoogle Scholar
  125. 125.
    Molinas CR, Binda MM, Mailova K, Koninckx PR. The rabbit nephrectomy model for training in laparoscopic surgery. Hum Reprod. 2004;19:185–90.CrossRefPubMedGoogle Scholar
  126. 126.
    Aydin A, Shafi AM, Khan MS, Dasgupta P, Ahmed K. Current status of simulation and training models in urological surgery: a systematic review. J Urol. 2016;196:312.CrossRefPubMedGoogle Scholar
  127. 127.
    Wijn RP, Persoon MC, Schout BM, Martens EJ, Scherpbier AJ, Hendrikx AJ. Virtual reality laparoscopic nephrectomy simulator is lacking in construct validity. J Endourol/Endourol Soc. 2010;24:117–22.CrossRefGoogle Scholar
  128. 128.
    Makiyama K, Nagasaka M, Inuiya T, Takanami K, Ogata M, Kubota Y. Development of a patient-specific simulator for laparoscopic renal surgery. Int J Urol. 2012;19:829–35.CrossRefPubMedGoogle Scholar
  129. 129.
    Makiyama K, Yamanaka H, Ueno D, et al. Validation of a patient-specific simulator for laparoscopic renal surgery. Int J Urol. 2015;22:572–6.CrossRefPubMedGoogle Scholar
  130. 130.
    Poniatowski LH, Wolf JS Jr, Nakada SY, Reihsen TE, Sainfort F, Sweet RM. Validity and acceptability of a high-fidelity physical simulation model for training of laparoscopic pyeloplasty. J Endourol/Endourol Soc. 2014;28:393–8.CrossRefGoogle Scholar
  131. 131.
    Jarrett TW, Chan DY, Charambura TC, Fugita O, Kavoussi LR. Laparoscopic pyeloplasty: the first 100 cases. J Urol. 2002;167:1253–6.CrossRefPubMedGoogle Scholar
  132. 132.
    Raza SJ, Soomroo KQ, Ather MH. “Latex glove” laparoscopic pyeloplasty model: a novel method for simulated training. Urol J. 2011;8:283–6.PubMedGoogle Scholar
  133. 133.
    Yang B, Zhang ZS, Xiao L, Wang LH, Xu CL, Sun YH. A novel training model for retroperitoneal laparoscopic dismembered pyeloplasty. J Endourol/Endourol Soc. 2010;24:1345–9.CrossRefGoogle Scholar
  134. 134.
    Ramachandran A, Kurien A, Patil P, et al. A novel training model for laparoscopic pyeloplasty using chicken crop. J Endourol/Endourol Soc. 2008;22:725–8.CrossRefGoogle Scholar
  135. 135.
    Jiang C, Liu M, Chen J, et al. Construct validity of the chicken crop model in the simulation of laparoscopic pyeloplasty. J Endourol/Endourol Soc. 2013;27:1032–6.CrossRefGoogle Scholar
  136. 136.
    Fu B, Zhang X, Lang B, et al. New model for training in laparoscopic dismembered ureteropyeloplasty. J Endourol/Endourol Soc. 2007;21:1381–5.CrossRefGoogle Scholar
  137. 137.
    Schuessler WW, Schulam PG, Clayman RV, Kavoussi LR. Laparoscopic radical prostatectomy: initial short-term experience. Urology. 1997;50:854–7.CrossRefPubMedGoogle Scholar
  138. 138.
    Nadu A, Olsson LE, Abbou CC. Simple model for training in the laparoscopic vesicourethral running anastomosis. J Endourol/Endourol Soc. 2003;17:481–4.CrossRefGoogle Scholar
  139. 139.
    Yang RM, Bellman GC. Laparoscopic urethrovesical anastomosis: a model to assess surgical competency. J Endourol/Endourol Soc. 2006;20:679–82.CrossRefGoogle Scholar
  140. 140.
    Sabbagh R, Chatterjee S, Chawla A, Kapoor A, Matsumoto ED. Task-specific bench model training versus basic laparoscopic skills training for laparoscopic radical prostatectomy: a randomized controlled study. Can Urol Assoc J (Journal de l’Association des urologues du Canada). 2009;3:22–30.CrossRefGoogle Scholar
  141. 141.
    Sabbagh R, Chatterjee S, Chawla A, Hoogenes J, Kapoor A, Matsumoto ED. Transfer of laparoscopic radical prostatectomy skills from bench model to animal model: a prospective, single-blind, randomized, controlled study. J Urol. 2012;187:1861–6.CrossRefPubMedGoogle Scholar
  142. 142.
    Laguna MP, Arce-Alcazar A, Mochtar CA, Van Velthoven R, Peltier A, de la Rosette JJ. Construct validity of the chicken model in the simulation of laparoscopic radical prostatectomy suture. J Endourol/Endourol Soc. 2006;20:69–73.Google Scholar
  143. 143.
    Tunitsky-Bitton E, King CR, Ridgeway B, et al. Development and validation of a laparoscopic sacrocolpopexy simulation model for surgical training. J Minim Invasive Gynecol. 2014;21:612–8.CrossRefPubMedGoogle Scholar
  144. 144.
    Guru KA, Kuvshinoff BW, Pavlov-Shapiro S, et al. Impact of robotics and laparoscopy on surgical skills: a comparative study. J Am Coll Surg. 2007;204:96–101.CrossRefPubMedGoogle Scholar
  145. 145.
    Zihni AM, Ohu I, Cavallo JA, Ousley J, Cho S, Awad MM. FLS tasks can be used as an ergonomic discriminator between laparoscopic and robotic surgery. Surg Endosc. 2014;28:2459–65.CrossRefPubMedGoogle Scholar
  146. 146.
    Moglia A, Ferrari V, Morelli L, Ferrari M, Mosca F, Cuschieri A. A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol. 2016;69:1065–80.CrossRefPubMedGoogle Scholar
  147. 147.
    Duchene DA, Moinzadeh A, Gill IS, Clayman RV, Winfield HN. Survey of residency training in laparoscopic and robotic surgery. J Urol. 2006;176:2158–66; discussion 67.CrossRefPubMedGoogle Scholar
  148. 148.
    Preston MA, Blew BD, Breau RH, Beiko D, Oake SJ, Watterson JD. Survey of senior resident training in urologic laparoscopy, robotics and endourology surgery in Canada. Can Urol Assoc J (Journal de l’Association des urologues du Canada). 2010;4:42–6.CrossRefGoogle Scholar
  149. 149.
    Hung AJ, Jayaratna IS, Teruya K, Desai MM, Gill IS, Goh AC. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 2013;112:864–71.CrossRefPubMedGoogle Scholar
  150. 150.
    Hung AJ, Patil MB, Zehnder P, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. 2012;187:630–7.CrossRefPubMedGoogle Scholar
  151. 151.
    Hung AJ, Zehnder P, Patil MB, et al. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186:1019–24.CrossRefPubMedGoogle Scholar
  152. 152.
    Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73:1288–92.CrossRefPubMedGoogle Scholar
  153. 153.
    Korets R, Mues AC, Graversen JA, et al. Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology. 2011;78:1326–30.CrossRefPubMedGoogle Scholar
  154. 154.
    Seixas-Mikelus SA, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding GE, Guru KA. Face validation of a novel robotic surgical simulator. Urology. 2010;76:357–60.CrossRefPubMedGoogle Scholar
  155. 155.
    Seixas-Mikelus SA, Stegemann AP, Kesavadas T, et al. Content validation of a novel robotic surgical simulator. BJU Int. 2011;107:1130–5.CrossRefPubMedGoogle Scholar
  156. 156.
    Sethi AS, Peine WJ, Mohammadi Y, Sundaram CP. Validation of a novel virtual reality robotic simulator. J Endourol/Endourol Soc. 2009;23:503–8.CrossRefGoogle Scholar
  157. 157.
    Mottrie A, De Naeyer G, Schatteman P, Carpentier P, Sangalli M, Ficarra V. Impact of the learning curve on perioperative outcomes in patients who underwent robotic partial nephrectomy for parenchymal renal tumours. Eur Urol. 2010;58:127–32.CrossRefPubMedGoogle Scholar
  158. 158.
    Hung AJ, Ng CK, Patil MB, et al. Validation of a novel robotic-assisted partial nephrectomy surgical training model. BJU Int. 2012;110:870–4.CrossRefPubMedGoogle Scholar
  159. 159.
    Hung AJ, Shah SH, Dalag L, Shin D, Gill IS. Development and validation of a novel robotic procedure specific simulation platform: partial nephrectomy. J Urol. 2015;194:520–6.CrossRefPubMedGoogle Scholar
  160. 160.
    Kozinn SI, Canes D, Sorcini A, Moinzadeh A. Robotic versus open distal ureteral reconstruction and reimplantation for benign stricture disease. J Endourol/Endourol Soc. 2012;26:147–51.CrossRefGoogle Scholar
  161. 161.
    Rassweiler JJ, Gozen AS, Erdogru T, Sugiono M, Teber D. Ureteral reimplantation for management of ureteral strictures: a retrospective comparison of laparoscopic and open techniques. Eur Urol. 2007;51:512–22; discussion 22–3.CrossRefPubMedGoogle Scholar
  162. 162.
    Tunitsky E, Murphy A, Barber MD, Simmons M, Jelovsek JE. Development and validation of a ureteral anastomosis simulation model for surgical training. Female Pelvic Med Reconstr Surg. 2013;19:346–51.CrossRefPubMedGoogle Scholar
  163. 163.
    Kang SG, Cho S, Kang SH, et al. The Tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Urology. 2014;84:345–50.CrossRefPubMedGoogle Scholar
  164. 164.
    Van Velthoven RF, Ahlering TE, Peltier A, Skarecky DW, Clayman RV. Technique for laparoscopic running urethrovesical anastomosis:the single knot method. Urology. 2003;61:699–702.CrossRefPubMedGoogle Scholar
  165. 165.
    Kim JY, Kim SB, Pyun JH, et al. Concurrent and predictive validation of robotic simulator tube 3 module. Korean J Urol. 2015;56:756–61.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Chowriappa A, Raza SJ, Fazili A, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. 2015;115:336–45.CrossRefPubMedGoogle Scholar
  167. 167.
    Stitzenberg KB, Wong YN, Nielsen ME, Egleston BL, Uzzo RG. Trends in radical prostatectomy: centralization, robotics, and access to urologic cancer care. Cancer. 2012;118:54–62.CrossRefPubMedGoogle Scholar
  168. 168.
    Freire MP, Choi WW, Lei Y, Carvas F, Hu JC. Overcoming the learning curve for robotic-assisted laparoscopic radical prostatectomy. Urol Clin North Am. 2010;37:37–47, Table of Contents.CrossRefPubMedGoogle Scholar
  169. 169.
    Hu JC, Wang Q, Pashos CL, Lipsitz SR, Keating NL. Utilization and outcomes of minimally invasive radical prostatectomy. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:2278–84.CrossRefGoogle Scholar
  170. 170.
    Vickers AJ, Bianco FJ, Serio AM, et al. The surgical learning curve for prostate cancer control after radical prostatectomy. J Natl Cancer Inst. 2007;99:1171–7.CrossRefPubMedGoogle Scholar
  171. 171.
    Alemozaffar M, Narayanan R, Percy AA, et al. Validation of a novel, tissue-based simulator for robot-assisted radical prostatectomy. J Endourol/Endourol Soc. 2014;28:995–1000.CrossRefGoogle Scholar
  172. 172.
    Volpe A, Ahmed K, Dasgupta P, et al. Pilot validation study of the European Association of Urology robotic training curriculum. Eur Urol. 2015;68:292–9.CrossRefPubMedGoogle Scholar
  173. 173.
    Ahmed K, Aydin A, Dasgupta P, Khan MS, McCabe JE. A novel cadaveric simulation program in urology. J Surg Educ. 2015;72:556–65.CrossRefPubMedGoogle Scholar
  174. 174.
    Shergill IS, Shaikh T, Arya M, Junaid I. A training model for suprapubic catheter insertion: the UroEmerge suprapubic catheter model. Urology. 2008;72:196–7.CrossRefPubMedGoogle Scholar
  175. 175.
    Hossack T, Chris BB, Beer J, Thompson G. A cost-effective, easily reproducible, suprapubic catheter insertion simulation training model. Urology. 2013;82:955–8.CrossRefPubMedGoogle Scholar
  176. 176.
    Singal A, Halverson A, Rooney DM, Davis LM, Kielb SJ. A validated low-cost training model for suprapubic catheter insertion. Urology. 2015;85:23–6.CrossRefPubMedGoogle Scholar
  177. 177.
    Grober ED, Hamstra SJ, Wanzel KR, et al. Laboratory based training in urological microsurgery with bench model simulators: a randomized controlled trial evaluating the durability of technical skill. J Urol. 2004;172:378–81.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of UrologySouthern Illinois UniversitySpringfieldUSA

Personalised recommendations