Advertisement

Simulation in Bariatric Surgery

  • Boris ZevinEmail author
Chapter
Part of the Comprehensive Healthcare Simulation book series (CHS)

Abstract

Obesity is a global problem with more than 1.9 billion adults being overweight and over 600 million adults being obese worldwide. Bariatric and metabolic surgery is the most effective strategy for weight loss and resolution of medical comorbidities in morbidly obese individuals. Given the effectiveness of surgery and the low morbidity of minimally invasive approaches employed today, laparoscopic bariatric procedures are among the most commonly performed operations in North America. The current training pathway for individuals interested in a career in laparoscopic bariatric and metabolic surgery requires successful completion of a general surgery residency training program followed by 1 or more years of a minimally invasive bariatric and metabolic surgery fellowship.

Simulation can be used for training of technical and nontechnical skills in laparoscopic bariatric and metabolic surgery. In this chapter I highlight the evidence supporting the use of simulation for technical and nontechnical skill acquisition in laparoscopic bariatric and metabolic surgery. I also identify existing gaps in the current body of knowledge regarding simulation-based training for bariatric and metabolic surgery and propose future directions for research within this field including the development of a national comprehensive simulation-based training curriculum, the utilization of simulation for high-stakes assessment and certification, and the need for cost-effectiveness studies in support of simulation-based training.

Keywords

Bariatric surgery Roux-en-Y gastric bypass Sleeve gastrectomy Adjustable gastric banding Simulation-based training 

References

  1. 1.
    Organization WH. Obesity and overweight. Available at: http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 2 Aug 2016.
  2. 2.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.CrossRefGoogle Scholar
  3. 3.
    Hutter MM, Randall S, Khuri SF, et al. Laparoscopic versus open gastric bypass for morbid obesity: a multicenter, prospective, risk-adjusted analysis from the National Surgical Quality Improvement Program. Ann Surg. 2006;243(5):657–62. discussion 62–6.CrossRefGoogle Scholar
  4. 4.
    Nguyen NT, Nguyen B, Shih A, et al. Use of laparoscopy in general surgical operations at academic centers. Surg Obes Relat Dis. 2013;9(1):15–20.CrossRefGoogle Scholar
  5. 5.
    Napolitano LM, Savarise M, Paramo JC, et al. Are general surgery residents ready to practice? A survey of the American College of Surgeons Board of governors and young fellows association. J Am Coll Surg. 2014;218(5):1063–72. e31.CrossRefGoogle Scholar
  6. 6.
    Surgery ASoBaM. ASMBS Certificate of Acknowledgement of Satisfactory Training in Metabolic and Bariatric Surgery for Fellows. Available at: https://asmbs.org/professional-education/fellowship. Accessed 13 Aug 2016.
  7. 7.
    Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23(4):427–36.CrossRefGoogle Scholar
  8. 8.
    Zevin B, Aggarwal R, Grantcharov TP. Simulation-based training and learning curves in laparoscopic Roux-en-Y gastric bypass. Br J Surg. 2012;99(7):887–95.CrossRefGoogle Scholar
  9. 9.
    Zevin B, Bonrath EM, Aggarwal R, et al. Development, feasibility, validity, and reliability of a scale for objective assessment of operative performance in laparoscopic gastric bypass surgery. J Am Coll Surg. 2013;216(5):955–65. e8.CrossRefGoogle Scholar
  10. 10.
    Zevin B, Dedy NJ, Bonrath EM, et al. Comprehensive simulation-enhanced training curriculum for an advanced minimally invasive procedure: a randomized controlled trial. Surg Obes Relat Dis. 2017;13(5):815–24.CrossRefGoogle Scholar
  11. 11.
    Varas J, Mejia R, Riquelme A, et al. Significant transfer of surgical skills obtained with an advanced laparoscopic training program to a laparoscopic jejunojejunostomy in a live porcine model: feasibility of learning advanced laparoscopy in a general surgery residency. Surg Endosc. 2012;26(12):3486–94.CrossRefGoogle Scholar
  12. 12.
    Boza C, Leon F, Buckel E, et al. Simulation-trained junior residents perform better than general surgeons on advanced laparoscopic cases. Surg Endosc. 2017;31(1):135–41.CrossRefGoogle Scholar
  13. 13.
    Lewis TM, Aggarwal R, Kwasnicki RM, et al. Can virtual reality simulation be used for advanced bariatric surgical training? Surgery. 2012;151(6):779–84.CrossRefGoogle Scholar
  14. 14.
    Giannotti D, Patrizi G, Casella G, et al. Can virtual reality simulators be a certification tool for bariatric surgeons? Surg Endosc. 2014;28(1):242–8.CrossRefGoogle Scholar
  15. 15.
    Fantola G, Perrenot C, Frisoni R, et al. Robotic Roux-en-Y gastric bypass surgical simulation curriculum. Obes Surg. 2014;24(10):1833–4.CrossRefGoogle Scholar
  16. 16.
    Spaniolas K, Kasten KR, Brinkley J, et al. The changing bariatric surgery landscape in the USA. Obes Surg. 2015;25(8):1544–6.CrossRefGoogle Scholar
  17. 17.
    Khorgami Z, Andalib A, Corcelles R, et al. Recent national trends in the surgical treatment of obesity: sleeve gastrectomy dominates. Surg Obes Relat Dis. 2015;11:S6–8.CrossRefGoogle Scholar
  18. 18.
    Sankaranarayanan G, Adair JD, Halic T, et al. Validation of a novel laparoscopic adjustable gastric band simulator. Surg Endosc. 2011;25(4):1012–8.CrossRefGoogle Scholar
  19. 19.
    Shouhed D, Gewertz B, Wiegmann D, et al. Integrating human factors research and surgery: a review. Arch Surg. 2012;147(12):1141–6.CrossRefGoogle Scholar
  20. 20.
    Lingard L, Regehr G, Orser B, et al. Evaluation of a preoperative checklist and team briefing among surgeons, nurses, and anesthesiologists to reduce failures in communication. Arch Surg. 2008;143(1):12–7. discussion 8.CrossRefGoogle Scholar
  21. 21.
    Hull L, Arora S, Aggarwal R, et al. The impact of nontechnical skills on technical performance in surgery: a systematic review. J Am Coll Surg. 2012;214(2):214–30.CrossRefGoogle Scholar
  22. 22.
    Dedy NJ, Bonrath EM, Ahmed N, et al. Structured training to improve nontechnical performance of junior surgical residents in the operating room: a randomized controlled trial. Ann Surg. 2016;263(1):43–9.CrossRefGoogle Scholar
  23. 23.
    Boet S, Bould MD, Fung L, et al. Transfer of learning and patient outcome in simulated crisis resource management: a systematic review. Can J Anaesth. 2014;61(6):571–82.CrossRefGoogle Scholar
  24. 24.
    Yule S, Flin R, Maran N, et al. Surgeons' non-technical skills in the operating room: reliability testing of the NOTSS behavior rating system. World J Surg. 2008;32(4):548–56.CrossRefGoogle Scholar
  25. 25.
    Sanfey H, McDowell C, Meier AH, et al. Team training for surgical trainees. Surg J R Coll Surg Edinb Irel. 2011;9(Suppl 1):S32–4.Google Scholar
  26. 26.
    ACGME. Common program requirements. Available at: http://www.acgme.org/Portals/0/PFAssets/ProgramRequirements/CPRs_07012015.pdf. Accessed 29 April 2016.
  27. 27.
    Nepomnayshy D, Alseidi AA, Fitzgibbons SC, et al. Identifying the need for and content of an advanced laparoscopic skills curriculum: results of a national survey. Am J Surg. 2016;211(2):421–5.CrossRefGoogle Scholar
  28. 28.
    Zevin B, Levy JS, Satava RM, et al. A consensus-based framework for design, validation, and implementation of simulation-based training curricula in surgery. J Am Coll Surg. 2012;215(4):580–6. e3.CrossRefGoogle Scholar
  29. 29.
    Dedy NJ, Szasz P, Louridas M, et al. Objective structured assessment of nontechnical skills: reliability of a global rating scale for the in-training assessment in the operating room. Surgery. 2015;157(6):1002–13.CrossRefGoogle Scholar
  30. 30.
    Aminian A, Chaudhry RM, Khorgami Z, et al. A challenge between trainee education and patient safety: does fellow participation impact postoperative outcomes following bariatric surgery? Obes Surg. 2016;26:1999.CrossRefGoogle Scholar
  31. 31.
    Birkmeyer JD, Finks JF, O'Reilly A, et al. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369(15):1434–42.CrossRefGoogle Scholar
  32. 32.
    de Montbrun SL, Roberts PL, Lowry AC, et al. A novel approach to assessing technical competence of colorectal surgery residents: the development and evaluation of the Colorectal Objective Structured Assessment of Technical Skill (COSATS). Ann Surg. 2013;258(6):1001–6.CrossRefGoogle Scholar
  33. 33.
    de Montbrun S, Roberts PL, Satterthwaite L, et al. Implementing and evaluating a National Certification Technical Skills Examination: the colorectal objective structured assessment of technical skill. Ann Surg. 2016;264(1):1–6.CrossRefGoogle Scholar
  34. 34.
    Zendejas B, Wang AT, Brydges R, et al. Cost: the missing outcome in simulation-based medical education research: a systematic review. Surgery. 2013;153(2):160–76.Google Scholar
  35. 35.
    Bridges M, Diamond DL. The financial impact of teaching surgical residents in the operating room. Am J Surg. 1999;177(1):28–32.CrossRefGoogle Scholar
  36. 36.
    Harrington DT, Roye GD, Ryder BA, et al. A time-cost analysis of teaching a laparoscopic entero-enterostomy. J Surg Educ. 2007;64(6):342–5.CrossRefGoogle Scholar
  37. 37.
    Cohen ER, Feinglass J, Barsuk JH, et al. Cost savings from reduced catheter-related bloodstream infection after simulation-based education for residents in a medical intensive care unit. Simul Healthc. 2010;5(2):98–102.CrossRefGoogle Scholar
  38. 38.
    Tolsgaard MG, Tabor A, Madsen ME, et al. Linking quality of care and training costs: cost-effectiveness in health professions education. Med Educ. 2015;49(12):1263–71.CrossRefGoogle Scholar
  39. 39.
    Administration USFaD. FDA Approved Obesity Treatment Devices. Available at: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ObesityDevices/ucm350134.htm. Accessed 24 Nov 2016.
  40. 40.
    Saber AA, Shoar S, Almadani MW, et al. Efficacy of first-time Intragastric balloon in weight loss: a systematic review and meta-analysis of randomized controlled trials. Obes Surg. 2016;27:277–87.CrossRefGoogle Scholar
  41. 41.
    Martini F, Paolino L, Marzano E, et al. Single-anastomosis pylorus-preserving bariatric procedures: review of the literature. Obes Surg. 2016;26(10):2503–15.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of SurgeryQueen’s University, Kingston Health Sciences CentreKingstonCanada

Personalised recommendations