The Art of Patient History Taking

  • Yasser El Miedany


The clinical interview is a crucial component of patient assessment. Comprehensive and accurate history taking is an essential skill for students and doctors to learn and develop, and when performed correctly, it forms the most valuable element of the diagnostic process. This chapter outlines the art of teaching the patient’s history taking, different patterns of rheumatic diseases and diagnostic strategies of locomotor disorders. At the end, the reader will be able to differentiate the main patterns of musculoskeletal conditions and learn how to implement targeted questioning and clinical reasoning to analyse the patient’s symptoms and interpret the clinical findings. By learning how to differentiate inflammatory from mechanical joint pains, distinguish different causes of regional pain and characterize the commonest patterns of inflammatory as well as non-inflammatory arthritis and its differential diagnosis and how to set up an investigation plan, the reader will gain a comprehensive set of information, enabling him/her to achieve core competence in making diagnosis and treatment decisions. Both factual knowledge of medical conditions and practical experience of history taking are required to develop and refine this crucial skill that underpins clinical practice.


History taking Regional examination Interpreting Analysis Monoarthritis Polyarthritis Electronic data recording ePROMs 


  1. 1.
    Smith R. Thoughts for new medical students at a new medical school. BMJ. 2003;327(7429):1430–3.CrossRefGoogle Scholar
  2. 2.
    Woolf A, Kristina Åkesson K. Primer: history and examination in the assessment of musculoskeletal problems. Nat Clin Pract Rheumatol. 2008;4(1):26–32.CrossRefGoogle Scholar
  3. 3.
    El Miedany Y. Adopting patient-centered care in standard practice: PROMs moving toward disease specific era. Clin Exp Rheumatol. 2014;32(suppl 85):S40–6.Google Scholar
  4. 4.
    European Action Towards Better Musculoskeletal Health. 2004. Accessed 10 Sept 2017.
  5. 5.
    Bub B. The patient’s lament: hidden key to effective communication: how to recognise and transform. J Med Ethics Med Humanit. 2004;30:63–9.CrossRefGoogle Scholar
  6. 6.
    European Action Towards Better Musculoskeletal Health. 2004. Accessed 13 Sept 2017.
  7. 7.
    Saleh K, et al. Development and evaluation of an integrated musculoskeletal disease course for medical students. J Bone Joint Surg Am. 2004;86-A:1653–8.CrossRefGoogle Scholar
  8. 8.
    Badcock LJ, et al. Meeting the needs of increasing numbers of medical students—a best practice approach. Rheumatology (Oxford). 2006;45:799–803.CrossRefGoogle Scholar
  9. 9.
    Bideau M, et al. Benefits of a programme taking advantage of patient-instructors to teach and assess musculoskeletal skills in medical students. Ann Rheum Dis. 2006;65:1626–30.CrossRefGoogle Scholar
  10. 10.
    Hendry GD, et al. Patients teach students: partners in arthritis education. Med Educ. 1999;33:674–7.CrossRefGoogle Scholar
  11. 11.
    Smith MD, et al. Evaluation of patient partners in the teaching of the musculoskeletal examination. J Rheumatol. 2000;27:1533–7.PubMedGoogle Scholar
  12. 12.
    Woolf AD, et al. Improving patient care by involving people with arthritis as educators of primary care physicians: the revised patient partner programme. Ann Rheum Dis. 2006;65(Suppl 2):620.Google Scholar
  13. 13.
    Woolf A, Åkesson K. Primer: history and examination in the assessment of musculoskeletal problems. Nat Clin Pract Rheumatol. 2008;4(1):28–33.CrossRefGoogle Scholar
  14. 14.
    General Medical Council. Tomorrow’s doctors: recommendations on undergraduate medical education. London: Education committee, General Medical Council; 1993.Google Scholar
  15. 15.
    Walker D, Kay L. Musculoskeletal examination for medical students: the need to agree what we teach. Rheumatology. 2002;41:1221–3.CrossRefGoogle Scholar
  16. 16.
    El Miedany Y, El Gaafary M, Youssef S, Almedany S, Palmer D. Using simulation in clinical education: psoriasis area and severity index (PASI) score assessment. Curr Rheumatol Rev. 2016;12(3):195–201.CrossRefGoogle Scholar
  17. 17.
    Miller A, Mahtani KR, Waterfield MA, Timms A, Misbah SA, Luqmani RA. Is rheumatoid factor useful in primary care? A retrospective cross-sectional study. Clin Rheumatol. 2013;32(7):1089–93.CrossRefGoogle Scholar
  18. 18.
    Kendall N, Burton K, Main C, Watson P. Tackling musculoskeletal problems: a guide for the clinic and workplace – identifying obstacles using the psychosocial flags framework. London: The Stationery Office (TSO); 2009.Google Scholar
  19. 19.
    Hill JC, Dunn KM, Lewis M, Mullis R, Main CJ, Foster NE, et al. A primary care back pain screening tool: identifying patient subgroups for initial treatment. Arthritis Rheum. 2008;59(5):632–41. Scholar
  20. 20.
    Centers for Disease Control Prevention (CDC). 2013. About the Behavioral Risk Factor Surveillance System (BRFSS). Accessed 16 Mar 2018.
  21. 21.
    Beland Y. Canadian community health survey–methodological overview. Health Rep. 2002;13(3):9–14.PubMedGoogle Scholar
  22. 22.
    Australian Bureau of Statistics. National health survey: user’s guide. 2009. Accessed 7 Jan 2018.
  23. 23.
    Busija L, Buchbinder R, Osborne RH. Quantifying the impact of transient joint symptoms, chronic joint symptoms, and arthritis: a population-based approach. Arthritis Care Res. 2009;61(10):1312–21.CrossRefGoogle Scholar
  24. 24.
    Badley EM, Ansari H. Arthritis and arthritis-attributable activity limitations in the United States and Canada: a cross-border comparison. Arthritis Care Res (Hoboken). 2010;62(3):308–15.CrossRefGoogle Scholar
  25. 25.
    Dominick KL, Golightly YM, Jackson GL. Arthritis prevalence and symptoms among US non-veterans, veterans, and veterans receiving Department of Veterans Affairs Healthcare. J Rheumatol. 2006;33(2):348–54.PubMedGoogle Scholar
  26. 26.
    Stang PE, Brandenburg NA, Lane MC, Merikangas KR, Von Korff MR, Kessler RC. Mental and physical comorbid conditions and days in role among persons with arthritis. Psychosom Med. 2006;68(1):152–8.CrossRefGoogle Scholar
  27. 27.
    van’t Land H, Verdurmen J, Ten Have M, van Dorsselaer S, Beekman A, de Graaf R. The association between arthritis and psychiatric disorders; results from a longitudinal population-based study. J Psychosom Res. 2010;68(2):187–93.CrossRefGoogle Scholar
  28. 28.
    Globe DR, Varma R, Torres M, Wu J, Klein R, Azen SP. Self-reported comorbidities and visual function in a population-based study: the Los Angeles Latino Eye Study. Arch Ophthalmol. 2005;123(6):815–21.CrossRefGoogle Scholar
  29. 29.
    Ferucci ED, Schumacher MC, Lanier AP, Murtaugh MA, Edwards S, Helzer LJ, et al. Arthritis prevalence and associations in American Indian and Alaska native people. Arthritis Care Res. 2008;59(8):1128–36.CrossRefGoogle Scholar
  30. 30.
    Busija L, Hollingsworth B, Buchbinder R, Osborne RH. Role of age, sex, and obesity in the higher prevalence of arthritis among lower socioeconomic groups: a population-based survey. Arthritis Rheum. 2007;57(4):553–61.CrossRefGoogle Scholar
  31. 31.
    Lee S, Tsang A, Huang Y-Q, Zhang M-Y, Liu Z-R, He Y-L, et al. Arthritis and physical-mental comorbidity in metropolitan China. J Psychosom Res. 2007;63(1):1–7.CrossRefGoogle Scholar
  32. 32.
    Vuković D, Bjegović V, Vuković G. Prevalence of chronic diseases according to socioeconomic status measured by wealth index: health survey in Serbia. Croat Med J. 2008;49(6):832–41.CrossRefGoogle Scholar
  33. 33.
    Lima MG, De Azevedo Barros MB, César CLG, Goldbaum M, Carandina L, Ciconelli RM. Impact of chronic disease on quality of life among the elderly in the state of Sao Paulo, Brazil: a population-based study. Rev Panam Salud Publica. 2009;25(4):314–21.CrossRefGoogle Scholar
  34. 34.
    Balluz LS, Okoro CA, Mokdad A. Association between selected unhealthy lifestyle factors, body mass index, and chronic health conditions among individuals 50 years of age or older, by race/ethnicity. Ethn Dis. 2008;18(4):450–7.PubMedGoogle Scholar
  35. 35.
    Ng TP, Niti M, Chiam PC, Kua EH. Prevalence and correlates of functional disability in multiethnic elderly Singaporeans. J Am Geriatr Soc. 2006;54(1):21–9.CrossRefGoogle Scholar
  36. 36.
    Niti M, Ng TP, Kua EH, Ho RCM, Tan CH. Depression and chronic medical illnesses in Asian older adults: the role of subjective health and functional status. Int J Geriatr Psychiatry. 2007;22(11):1087–94.CrossRefGoogle Scholar
  37. 37.
    Kriegsman DM, Penninx BW, van Eijk JT, Boeke AJ, Deeg DJ. Self-reports and general practitioner information on the presence of chronic diseases in community dwelling elderly. A study on the accuracy of patients’ self-reports and on determinants of inaccuracy. J Clin Epidemiol. 1996;49(12):1407–17.CrossRefGoogle Scholar
  38. 38.
    Singh JA. Discordance between self-report of physician diagnosis and administrative database diagnosis of arthritis and its predictors. J Rheumatol. 2009;36(9):2000–8.CrossRefGoogle Scholar
  39. 39.
    Bombard JM, Powell KE, Martin LM, Helmick CG, Wilson WH. Validity and reliability of self-reported arthritis: Georgia senior centers, 2000–2001. Am J Prev Med. 2005;28(3):251–8.CrossRefGoogle Scholar
  40. 40.
    March LM, Schwarz JM, Carfrae BH, Bagge E. Clinical validation of self-reported osteoarthritis. Osteoarthr Cartil. 1998;6(2):87–93.CrossRefGoogle Scholar
  41. 41.
    Kvien TK, Glennas A, Knudsrod OG, Smedstad LM. The validity of self-reported diagnosis of rheumatoid arthritis: results from a population survey followed by clinical examinations. J Rheumatol. 1996;23(11):1866–71.PubMedGoogle Scholar
  42. 42.
    Palmer D, El Miedany Y. EROMIA in inflammatory arthritis: the next step in standard practice. Br J Nurs. 2013;9(1):42–6.CrossRefGoogle Scholar
  43. 43.
    El Miedany Y, El Gaafary M, Youssef S, Bahlas S, Almedany S, Ahmed I, Palmer D. Toward electronic health recording: evaluation of electronic patient-reported outcome measures system for remote monitoring of early rheumatoid arthritis. J Rheumatol. 2016;43(12):2106–12.CrossRefGoogle Scholar
  44. 44.
    El Miedany Y, El Gaafary M, El Aroussy N, Bahlas S, Hegazi M, Palmer D, Youssef S. Toward electronic health recording: evaluation of electronic patient reported outcome measures (e-PROMs) system for remote monitoring of early systemic lupus patients. Clin Rheumatol. 2017;36(11):2461–9.CrossRefGoogle Scholar
  45. 45.
    Amarasingham R, Plantinga L, Diener-West M, Gaskin DJ, Powe NR. Clinical information technologies and inpatient outcomes: a multiple hospital study. Arch Intern Med. 2009;169:108–14.CrossRefGoogle Scholar
  46. 46.
    Richter J, Chehab G, Schneider M. Electronic health records in rheumatology: emphasis on automated scoring and additional use. Clin Exp Rheumatol. 2016;34(Suppl. 101):S62–8.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yasser El Miedany
    • 1
    • 2
  1. 1.King’s College London, Darent Valley HospitalDartfordUK
  2. 2.Rheumatology and RehabilitationAin Shams UniversityCairoEgypt

Personalised recommendations