Advertisement

Clinical Applications in Medical Practice

  • Daiva Paulaviciute-Baikstiene
  • Renata Vaiciuliene
Chapter

Abstract

Imaging technologies, such as AS-OCT and UBM, are becoming essential tools for the better diagnosis and management of glaucoma. These devices provide precise visualisation and objective assessment of iridocorneal angle structures and the morphological analysis of filtering bleb that can help to reveal certain features and thereby predict the functional outcome before and after invasive and non-invasive surgery. Anterior segment imaging can explain the reasons whereby this procedure is unsuccessful.

References

  1. 1.
    European Glaucoma Society. Terminolology and GUIDELINES for Glaucoma. 4th ed. Florence: European Glaucoma Society; 2014.Google Scholar
  2. 2.
    Narayanaswamy A. Diagnostic performance of anterior chamber angle measurements for detecting eyes with narrow angles. Arch Ophthalmol. 2010;128:1321.  https://doi.org/10.1001/archophthalmol.2010.231.CrossRefPubMedGoogle Scholar
  3. 3.
    Lee KS, Sung KR, Kang SY, et al. Residual closure in narrow-angle eyes following laser peripheral iridotomy: anterior segment optical coherence tomography quantitative study. Jpn J Ophthalmol. 2011;55:213–9.  https://doi.org/10.1007/s10384-011-0009-3.CrossRefPubMedGoogle Scholar
  4. 4.
    See JLS, Chew PTK, Smith SD, et al. Changes in anterior segment morphology in response to illumination and after laser iridotomy in Asian eyes: an anterior segment OCT study. Br J Ophthalmol. 2007;91:1485–9.  https://doi.org/10.1136/bjo.2006.113654.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cheung CY, Liu S, Weinreb RN, et al. Dynamic analysis of iris configuration with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:4040–6.  https://doi.org/10.1167/iovs.09-3941.CrossRefPubMedGoogle Scholar
  6. 6.
    Masoodi H, Jafarzadehpur E, Esmaeili A, et al. Evaluation of anterior chamber angle under dark and light conditions in angle closure glaucoma: an anterior segment OCT study. Cont Lens Anterior Eye. 2014;37:300–4.  https://doi.org/10.1016/j.clae.2014.04.002.CrossRefPubMedGoogle Scholar
  7. 7.
    Sakata LM, Lavanya R, Friedman DS, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology. 2008;115:769–74.  https://doi.org/10.1016/j.ophtha.2007.06.030.CrossRefPubMedGoogle Scholar
  8. 8.
    Nolan WP, See JL, Chew PTK, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology. 2007;114:33–9.  https://doi.org/10.1016/j.ophtha.2006.05.073.CrossRefPubMedGoogle Scholar
  9. 9.
    Tun TA, Baskaran M, Perera SA, et al. Sectoral variations of iridocorneal angle width and iris volume in Chinese Singaporeans: a swept-source optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol. 2014;252:1127–32.  https://doi.org/10.1007/s00417-014-2636-0.CrossRefPubMedGoogle Scholar
  10. 10.
    Mak H, Xu G, Leung CK-S. Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. Ophthalmology. 2013;120:2517–24.  https://doi.org/10.1016/j.ophtha.2013.05.009.CrossRefPubMedGoogle Scholar
  11. 11.
    Konstantopoulos A, Hossain P, Anderson DF. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br J Ophthalmol. 2007;91:551–7.  https://doi.org/10.1136/bjo.2006.103408.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography HHS Public Access. Science. 1991;22:1178–81.  https://doi.org/10.1002/jcp.24872.The.CrossRefGoogle Scholar
  13. 13.
    Pavlin CJ, Ritch R, Foster FS. Ultrasound biomicroscopy in plateau iris syndrome. Am J Ophthalmol. 1992;113:390–5.CrossRefGoogle Scholar
  14. 14.
    Pavlin CJ, Harasiewicz K, Foster FS. Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am J Ophthalmol. 1992;113:381–9.CrossRefGoogle Scholar
  15. 15.
    Ishikawa H, Liebmann JM, Ritch R. Quantitative assessment of the anterior segment using ultrasound biomicroscopy. Curr Opin Ophthalmol. 2000;11:133–9.CrossRefGoogle Scholar
  16. 16.
    Yao B, Wu L, Zhang C, Wang X. Ultrasound biomicroscopic features associated with angle closure in fellow eyes of acute primary angle closure after laser iridotomy. Ophthalmology. 2009;116:444–448.e2.  https://doi.org/10.1016/j.ophtha.2008.10.019.CrossRefPubMedGoogle Scholar
  17. 17.
    Lim S-H. Clinical applications of anterior segment optical coherence tomography. J Ophthalmol. 2015;2015:1–12.  https://doi.org/10.1155/2015/605729.CrossRefGoogle Scholar
  18. 18.
    Aptel F, Denis P. Optical coherence tomography quantitative analysis of iris volume changes after pharmacologic mydriasis. Ophthalmology. 2010;117:3–10.  https://doi.org/10.1016/j.ophtha.2009.10.030.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Radhakrishnan S, Goldsmith J, Huang D, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol (Chicago, IL: 1960). 2005;123:1053–9.  https://doi.org/10.1001/archopht.123.8.1053.CrossRefGoogle Scholar
  20. 20.
    Cheon MH, Sung KR, Choi EH, et al. Effect of age on anterior chamber angle configuration in Asians determined by anterior segment optical coherence tomography; clinic-based study. Acta Ophthalmol. 2010;88:e205–10.  https://doi.org/10.1111/j.1755-3768.2010.01960.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Salim S. The role of anterior segment optical coherence tomography in glaucoma. J Ophthalmol. 2012;2012:476801.  https://doi.org/10.1155/2012/476801.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Aslanides IM, Libre PE, Silverman RH, et al. High frequency ultrasound imaging in pupillary block glaucoma. Br J Ophthalmol. 1995;79:972–6.CrossRefGoogle Scholar
  23. 23.
    Mandell MA, Pavlin CJ, Weisbrod DJ, Simpson ER. Anterior chamber depth in plateau iris syndrome and pupillary block as measured by ultrasound biomicroscopy. Am J Ophthalmol. 2003;136:900–3.CrossRefGoogle Scholar
  24. 24.
    Quek DTL, Nongpiur ME, Perera SA, Aung T. Angle imaging: advances and challenges. Indian J Ophthalmol. 2011;59(Suppl):S69–75.  https://doi.org/10.4103/0301-4738.73699.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dorairaj S, Tsai JC, Grippo TM. Changing trends of imaging in angle closure evaluation. ISRN Ophthalmol. 2012;2012:1–7.  https://doi.org/10.5402/2012/597124.CrossRefGoogle Scholar
  26. 26.
    Kobayashi H, Hirose M, Kobayashi K. Ultrasound biomicroscopic analysis of pseudophakic pupillary block glaucoma induced by Soemmering’s ring. Br J Ophthalmol. 2000;84:1142–6.CrossRefGoogle Scholar
  27. 27.
    Sathish S, MacKinnon JR, Atta HR. Role of ultrasound biomicroscopy in managing pseudophakic pupillary block glaucoma. J Cataract Refract Surg. 2000;26:1836–8.CrossRefGoogle Scholar
  28. 28.
    Maslin JS, Barkana Y, Dorairaj SK. Anterior segment imaging in glaucoma: an updated review. Indian J Ophthalmol. 2015;63:630–40.  https://doi.org/10.4103/0301-4738.169787.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chalita MR, Li Y, Smith S, et al. High-speed optical coherence tomography of laser iridotomy. Am J Ophthalmol. 2005;140:1133–6.  https://doi.org/10.1016/j.ajo.2005.06.054.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gazzard G, Friedman DS, Devereux JG, et al. A prospective ultrasound biomicroscopy evaluation of changes in anterior segment morphology after laser iridotomy in Asian eyes. Ophthalmology. 2003;110:630–8.  https://doi.org/10.1016/S0161-6420(02)01893-6.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee KS, Sung KR, Kang SY, et al. Residual anterior chamber angle closure in narrow-angle eyes following laser peripheral iridotomy: anterior segment optical coherence tomography quantitative study. Jpn J Ophthalmol. 2011;55:213–9.  https://doi.org/10.1007/s10384-011-0009-3.CrossRefPubMedGoogle Scholar
  32. 32.
    Alsagoff Z, Aung T, Ang LP, Chew PT. Long-term clinical course of primary angle-closure glaucoma in an Asian population. Ophthalmology. 2000;107:2300–4.CrossRefGoogle Scholar
  33. 33.
    Ang LP, Aung T, Chew PT. Acute primary angle closure in an Asian population: long-term outcome of the fellow eye after prophylactic laser peripheral iridotomy. Ophthalmology. 2000;107:2092–6.CrossRefGoogle Scholar
  34. 34.
    Aung T, Ang LP, Chan SP, Chew PT. Acute primary angle-closure: long-term intraocular pressure outcome in Asian eyes. Am J Ophthalmol. 2001;131:7–12.CrossRefGoogle Scholar
  35. 35.
    He M, Friedman DS, Ge J, et al. Laser peripheral iridotomy in primary angle-closure suspects: biometric and gonioscopic outcomes: the Liwan Eye Study. Ophthalmology. 2007;114:494–500.  https://doi.org/10.1016/j.ophtha.2006.06.053.CrossRefPubMedGoogle Scholar
  36. 36.
    Trope GE, Pavlin CJ, Bau A, et al. Malignant glaucoma. Clinical and ultrasound biomicroscopic features. Ophthalmology. 1994;101:1030–5.CrossRefGoogle Scholar
  37. 37.
    Nongpiur ME, Ku JYF, Aung T. Angle closure glaucoma: a mechanistic review. Curr Opin Ophthalmol. 2011;22:96–101.  https://doi.org/10.1097/ICU.0b013e32834372b9.CrossRefPubMedGoogle Scholar
  38. 38.
    Quigley HA. Angle-closure glaucoma-simpler answers to complex mechanisms: LXVI Edward Jackson Memorial Lecture. Am J Ophthalmol. 2009;148:657–669.e1.CrossRefGoogle Scholar
  39. 39.
    Wang N, Lai M, Chen X, Zhou W. Quantitative real time measurement of iris configuration in living human eyes. Zhonghua Yan Ke Za Zhi. 1998;34:369–72.Google Scholar
  40. 40.
    Kumar G, Bali SJ, Panda A, et al. Prevalence of plateau iris configuration in primary angle closure glaucoma using ultrasound biomicroscopy in the Indian population. Indian J Ophthalmol. 2012;60:175–8.  https://doi.org/10.4103/0301-4738.95865.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kumar RS, Baskaran M, Chew PTK, et al. Prevalence of plateau iris in primary angle closure suspects an ultrasound biomicroscopy study. Ophthalmology. 2008;115:430–4.  https://doi.org/10.1016/j.ophtha.2007.07.026.CrossRefPubMedGoogle Scholar
  42. 42.
    Mochizuki H, Takenaka J, Sugimoto Y, et al. Comparison of the prevalence of plateau iris configurations between angle-closure glaucoma and open-angle glaucoma using ultrasound biomicroscopy. J Glaucoma. 2011;20:315–8.  https://doi.org/10.1097/IJG.0b013e3181e3d2da.CrossRefPubMedGoogle Scholar
  43. 43.
    Mansoori T, Sarvepally VK, Balakrishna N. Plateau iris in primary angle closure glaucoma: an Ultrasound Biomicroscopy Study. J Glaucoma. 2016;25:e82–6.  https://doi.org/10.1097/IJG.0000000000000263.CrossRefPubMedGoogle Scholar
  44. 44.
    Salim S, Dorairaj S. Anterior segment imaging in glaucoma. Semin Ophthalmol. 2013;28:113–25.  https://doi.org/10.3109/08820538.2013.777749.CrossRefPubMedGoogle Scholar
  45. 45.
    Parc C, Laloum J, Bergès O. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of plateau iris. J Fr Ophtalmol. 2010;33(4):266.e1–3.Google Scholar
  46. 46.
    Filipe HP, Carvalho M, Freitas L. Ultrasound biomicroscopy and anterior segment optical coherence tomography in the diagnosis and management of glaucoma. Am J Ophthalmol. 2016;15(2).Google Scholar
  47. 47.
    Karickhoff JR. Pigmentary dispersion syndrome and pigmentary glaucoma: a new mechanism concept, a new treatment, and a new technique. Ophthalmic Surg. 1992;23:269–77.PubMedGoogle Scholar
  48. 48.
    Aptel F, Beccat S, Fortoul V, Denis P. Biometric analysis of pigment dispersion syndrome using anterior segment optical coherence tomography. Ophthalmology. 2011;118:1563–70.  https://doi.org/10.1016/j.ophtha.2011.01.001.CrossRefPubMedGoogle Scholar
  49. 49.
    Kanadani FN, Dorairaj S, Langlieb AM, et al. Ultrasound biomicroscopy in asymmetric pigment dispersion syndrome and pigmentary glaucoma. Arch Ophthalmol (Chicago, IL: 1960). 2006;124:1573–6.  https://doi.org/10.1001/archopht.124.11.1573.CrossRefGoogle Scholar
  50. 50.
    Guo S, Gewirtz M, Thaker R, Reed M. Characterizing pseudoexfoliation syndrome through the use of ultrasound biomicroscopy. J Cataract Refract Surg. 2006;32(4):614–7.CrossRefGoogle Scholar
  51. 51.
    Tamm ER. The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res. 2009;88:648–55.  https://doi.org/10.1016/j.exer.2009.02.007.CrossRefPubMedGoogle Scholar
  52. 52.
    Samples JR, IIK A, editors. Surgical innovations in glaucoma. New York: Springer Science+Business Media; 2013.Google Scholar
  53. 53.
    Yan X, Li M, Chen Z, et al. Schlemm’s canal and trabecular meshwork in eyes with primary open angle glaucoma: a comparative study using high-frequency ultrasound biomicroscopy. PLoS One. 2016;11:1–15.  https://doi.org/10.1371/journal.pone.0145824.CrossRefGoogle Scholar
  54. 54.
    Kagemann L, Wang B, Wollstein G, et al. IOP elevation reduces schlemm’s canal cross-sectional area. Invest Ophthalmol Vis Sci. 2014;55:1805–9.  https://doi.org/10.1167/iovs.13-13264.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hong J, Xu J, Wei A, et al. Spectral-domain optical coherence tomographic assessment of Schlemm’s canal in Chinese subjects with primary open-angle glaucoma. Ophthalmology. 2013;120:709–15.  https://doi.org/10.1016/j.ophtha.2012.10.008.CrossRefPubMedGoogle Scholar
  56. 56.
    Irshad FA, Mayfield MS, Zurakowski D, Ayyala RS. Variation in Schlemm’s canal diameter and location by ultrasound biomicroscopy. Ophthalmology. 2010;117:916–20.  https://doi.org/10.1016/j.ophtha.2009.09.041.CrossRefPubMedGoogle Scholar
  57. 57.
    Paulaviciute-Baikstiene D, Vaiciuliene R, Jasinskas V, Januleviciene I. Evaluation of outflow structures in vivo after the phacocanaloplasty. J Ophthalmol. 2016;2016:4519846.  https://doi.org/10.1155/2016/4519846.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wang F, Shi G, Li X, et al. Comparison of Schlemm’s canal’s biological parameters in primary open-angle glaucoma and normal human eyes with swept source optical. J Biomed Opt. 2012;17:116008.  https://doi.org/10.1117/1.JBO.17.11.116008.CrossRefPubMedGoogle Scholar
  59. 59.
    Kagemann L, Wollstein G, Ishikawa H, et al. Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Investig Opthalmol Vis Sci. 2010;51:4054.  https://doi.org/10.1167/iovs.09-4559.CrossRefGoogle Scholar
  60. 60.
    Grieshaber MC. Ab externo Schlemm’s canal surgery: viscocanalostomy and canaloplasty. Dev Ophthalmol. 2012;50:109–24.  https://doi.org/10.1159/000334793.CrossRefPubMedGoogle Scholar
  61. 61.
    Vaiciuliene R, Körber N, Jasinskas V. Clinical evaluation of aqueous outflow system in vivo and correlation with intraocular pressure before and after non-penetrating glaucoma surgery. Int Ophthalmol. 2017.  https://doi.org/10.1007/s10792-017-0715-z CrossRefGoogle Scholar
  62. 62.
    Fuest M, Kuerten D, Koch E, et al. Evaluation of early anatomical changes following canaloplasty with anterior segment spectral-domain optical coherence tomography and ultrasound biomicroscopy. Acta Ophthalmol. 2016;94:e287–92.  https://doi.org/10.1111/aos.12917.CrossRefPubMedGoogle Scholar
  63. 63.
    Powers TP, Stewart WC, Stroman GA. Ultrastructural features of filtration blebs with different clinical appearances. Ophthalmic Surg Lasers. 1996;27:790–4.PubMedGoogle Scholar
  64. 64.
    Wells AP, Ashraff NN, Hall RC, Purdie G. Comparison of two clinical bleb grading systems. Ophthalmology. 2006;113:77–83.  https://doi.org/10.1016/j.ophtha.2005.06.037.CrossRefPubMedGoogle Scholar
  65. 65.
    Cantor LB, Mantravadi A, WuDunn D, et al. Morphologic classification of filtering blebs after glaucoma filtration surgery: The Indiana Bleb Appearance Grading Scale. J Glaucoma. 2003;12:266–71.  https://doi.org/10.1097/00061198-200306000-00015.CrossRefPubMedGoogle Scholar
  66. 66.
    Wells AP, Crowston JG, Marks J, et al. A pilot study of a system for grading of drainage blebs after glaucoma surgery. J Glaucoma. 2004;13:454–60.  https://doi.org/10.1097/00061198-200412000-00005.CrossRefPubMedGoogle Scholar
  67. 67.
    Klink J, Schmitz B, Lieb WE, et al. Filtering bleb function after clear cornea phacoemulsification: A prospective study. Br J Ophthalmol. 2005;89:597–601.  https://doi.org/10.1136/bjo.2004.041988.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Picht G, Grehn F. Development of the filtering bleb after trabeculectomy. Classification, histopathology, wound healing process. Ophthalmology. 1998;95:W380–7.CrossRefGoogle Scholar
  69. 69.
    Picht G, Grehn F. Classification of filtering blebs in trabeculectomy: biomicroscopy and functionality. Curr Opin Ophthalmol. 1998;9:2–8.CrossRefGoogle Scholar
  70. 70.
    Furrer S, Menke MN, Funk J, Töteberg-Harms M. Evaluation of filtering blebs using the Wuerzburg bleb classification score compared to clinical findings. BMC Ophthalmol. 2012;12:24.  https://doi.org/10.1186/1471-2415-12-24.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Thatte S, Rana R, Gaur N. Appraisal of bleb using trio of intraocular pressure, morphology on slit lamp, and gonioscopy. Ophthalmol Eye Dis. 2016;8:41–8.  https://doi.org/10.4137/OED.S40388.TYPE.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991;98:287–95.CrossRefGoogle Scholar
  73. 73.
    Ishikawa H, Schuman J. Anterior segment imaging: ultrasound biomicroscopy. Ophthalmol Clin North Am. 2004;17:7–20.  https://doi.org/10.1016/j.ohc.2003.12.001.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Klink T, Kann G, Ellinger P, et al. The prognostic value of the wuerzburg bleb classification score for the outcome of trabeculectomy. Ophthalmol J Int d’ophtalmologie Int J Ophthalmol Zeitschrift fur Augenheilkd. 2011;225:55–60.  https://doi.org/10.1159/000314717.CrossRefGoogle Scholar
  75. 75.
    Sacu S, Rainer G, Findl O, et al. Correlation between the early morphological appearance of filtering blebs and outcome of trabeculectomy with mitomycin C. J Glaucoma. 2003;12:430–5.  https://doi.org/10.1097/00061198-200310000-00006.CrossRefPubMedGoogle Scholar
  76. 76.
    Marquardt D, Lieb WE, Grehn F. Intensified postoperative care versus conventional follow-up: a retrospective long-term analysis of 177 trabeculestomies. Graefes Arch Clin Exp Ophthalmol. 2004;242:106–13.  https://doi.org/10.1007/s00417-003-0775-9.CrossRefPubMedGoogle Scholar
  77. 77.
    Ciancaglini M, Carpineto P, Agnifili L, et al. Filtering bleb functionality: a clinical, anterior segment optical coherence tomography and in vivo confocal microscopy study. J Glaucoma. 2008;17:308–17.  https://doi.org/10.1097/IJG.0b013e31815c3a19.CrossRefPubMedGoogle Scholar
  78. 78.
    Paulaviciute-Baikstiene D, Renata Vaiciuliene IJ. Filtering blebs structure and function evaluation using optical coherence tomography. J Model Ophthalmol. 2016;1:10–9.CrossRefGoogle Scholar
  79. 79.
    Caglar C, Karpuzoglu N, Batur M, Yasar T. In vivo confocal microscopy and biomicroscopy of filtering blebs after trabeculectomy. J Glaucoma. 2016;25:e377–83.  https://doi.org/10.1097/IJG.0000000000000377.CrossRefPubMedGoogle Scholar
  80. 80.
    Zhang Y, Wu Q, Zhang M, et al. Evaluating subconjunctival bleb function after trabeculectomy using slit-lamp optical coherence tomography and ultrasound biomicroscopy. Chin Med J (Engl). 2008;121:1274–9.CrossRefGoogle Scholar
  81. 81.
    Guthoff R, Klink T, Schlunck G, Grehn F. In vivo confocal microscopy of failing and functioning filtering blebs: results and clinical correlations. J Glaucoma. 2006;15:552–8.  https://doi.org/10.1097/01.ijg.0000212295.39034.10.CrossRefPubMedGoogle Scholar
  82. 82.
    Theelen T, Wesseling P, Keunen JEE, Klevering BJ. A pilot study on slit lamp-adapted optical coherence tomography imaging of trabeculectomy filtering blebs. Graefes Arch Clin Exp Ophthalmol. 2007;245:877–82.  https://doi.org/10.1007/s00417-006-0476-2.CrossRefPubMedGoogle Scholar
  83. 83.
    Hirooka K, Takagishi M, Baba T, et al. Stratus optical coherence tomography study of filtering blebs after primary trabeculectomy with a fornix-based conjunctival flap. Acta Ophthalmol. 2010;88:60–4.  https://doi.org/10.1111/j.1755-3768.2008.01401.x.CrossRefPubMedGoogle Scholar
  84. 84.
    Hu C-Y, Matsuo H, Tomita G, et al. Clinical characteristics and leakage of functioning blebs after trabeculectomy with mitomycin-C in primary glaucoma patients. Ophthalmology. 2003;110:345–52.  https://doi.org/10.1016/S0161-6420(02)01739-6.CrossRefPubMedGoogle Scholar
  85. 85.
    DeBry PW, Perkins TW, Heatley G, et al. Incidence of late-onset bleb-related complications following trabeculectomy with mitomycin. Arch Ophthalmol. 2002;120:297–300.  https://doi.org/10.1001/archopht.120.3.297.CrossRefPubMedGoogle Scholar
  86. 86.
    Soltau JB, Rothman RF, Budenz DL, et al. Risk factors for glaucoma filtering bleb infections. Arch Ophthalmol. 2000;118:338–42.  https://doi.org/10.1097/00132578-200007000-00012.CrossRefPubMedGoogle Scholar
  87. 87.
    Kasaragod D, Fukuda S, Ueno Y, et al. Objective evaluation of functionality of filtering bleb based on polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57:2305–10.  https://doi.org/10.1167/iovs.15-18178.CrossRefPubMedGoogle Scholar
  88. 88.
    Kawana K, Kiuchi T, Yasuno Y, Oshika T. Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography. Ophthalmology. 2009;116:848–55.  https://doi.org/10.1016/j.ophtha.2008.11.019.CrossRefPubMedGoogle Scholar
  89. 89.
    Mastropasqua R, Fasanella V, Agnifili L, et al. Anterior segment optical coherence tomography imaging of conjunctival filtering blebs after glaucoma surgery. Biomed Res Int. 2014;2014:610623.  https://doi.org/10.1155/2014/610623.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kokubun T, Tsuda S, Kunikata H, et al. Anterior-segment optical coherence tomography for predicting postoperative outcomes after trabeculectomy. Curr Eye Res. 2018;43:762–70.  https://doi.org/10.1080/02713683.2018.1446535.CrossRefPubMedGoogle Scholar
  91. 91.
    Tominaga A, Miki A, Yamazaki Y, et al. The assessment of the filtering bleb function with anterior segment optical coherence tomography. J Glaucoma. 2010;19:551–5.  https://doi.org/10.1097/IJG.0b013e3181ca76f3.CrossRefPubMedGoogle Scholar
  92. 92.
    Kojima S, Inoue T, Nakashima K-I, et al. Filtering blebs using 3-dimensional anterior-segment optical coherence tomography. JAMA Ophthalmol. 2015;133:148.  https://doi.org/10.1001/jamaophthalmol.2014.4489.CrossRefPubMedGoogle Scholar
  93. 93.
    Inoue T, Matsumura R, Kuroda U, et al. Precise identification of filtration openings on the scleral flap by three-dimensional anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:8288–94.  https://doi.org/10.1167/iovs.12-10941.CrossRefPubMedGoogle Scholar
  94. 94.
    Singh M, Aung T, Friedman DS, et al. Anterior segment optical coherence tomography imaging of trabeculectomy blebs before and after laser suture lysis. Am J Ophthalmol. 2007;143:873–5.  https://doi.org/10.1016/j.ajo.2006.12.001.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daiva Paulaviciute-Baikstiene
    • 1
  • Renata Vaiciuliene
    • 1
  1. 1.Lithuanian University of Health SciencesKaunasLithuania

Personalised recommendations