Advertisement

Interactions Between IOP, ICP, OPP

  • Lina SiaudvytyteEmail author
Chapter

Abstract

Intraocular, intracranial and ocular perfusion pressures are important parameters in glaucoma pathophysiology and progression. Taking into account the physiological triangular relationship between intraocular, intracranial and arterial blood pressures, glaucoma might be described as a misbalance between these parameters, leading to increase in translaminar pressure difference and translaminar pressure gradient.

References

  1. 1.
    Dickerman RD, Smith GH, Langham-Roof L, McConathy WJ, East JW, Smith AB. Intra-ocular pressure changes during maximal isometric contraction: does this reflect intra-cranial pressure or retinal venous pressure? Neurol Res. 1999;21(3):243–6.CrossRefGoogle Scholar
  2. 2.
    Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. Retinal artery and vein pressures in the dog and their relationship to aortic, intraocular, and cerebrospinal fluid pressures. Microvasc Res. 1997;53(3):211–21.CrossRefGoogle Scholar
  3. 3.
    Hayreh SS, Edwards J. Ophthalmic arterial and venous pressures. Effects of acute intracranial hypertension. Br J Ophthalmol. 1971;55(10):649–63.CrossRefGoogle Scholar
  4. 4.
    Morrow BA, Starcevic VP, Keil LC, Seve WB. Intracranial hypertension after cerebroventricular infusions in conscious rats. Am J Phys. 1990;258(5 Pt 2):R1170–6.Google Scholar
  5. 5.
    Maurel D, Ixart G, Barbanel G, Mekaouche M, Assenmacher I. Effects of acute tilt from orthostatic to head-down antiorthostatic restraint and of sustained restraint on the intra-cerebroventricular pressure in rats. Brain Res. 1996;736(1–2):165–73.CrossRefGoogle Scholar
  6. 6.
    Smith RB, Aass AA, Nemoto EM. Intraocular and intracranial pressure during respiratory alkalosis and acidosis. Br J Anaesth. 1981;53(9):967–72.CrossRefGoogle Scholar
  7. 7.
    Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89(2):142–8.CrossRefGoogle Scholar
  8. 8.
    Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1057–63.CrossRefGoogle Scholar
  9. 9.
    Jonas JB, Nangia V, Wang N, Bhate K, Nangia P, Nangia P, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The Central India Eye and Medical Study. PLoS One. 2013;8(12):2–9.CrossRefGoogle Scholar
  10. 10.
    Jonas JB, Wang NL, Wang YX, You QS, Xie XB, Yang DY, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011. Acta Ophthalmol. 2015;93(1):e7–13.CrossRefGoogle Scholar
  11. 11.
    Sheeran P, Bland JM, Hall GM. Intraocular pressure changes and alterations in intracranial pressure. Lancet. 2000;355(9207):899.CrossRefGoogle Scholar
  12. 12.
    Li Z, Yang Y, Lu Y, Liu D, Xu E, Jia J, et al. Intraocular pressure vs intracranial pressure in disease conditions: A prospective cohort study (Beijing iCOP study). BMC Neurol. 2012;12:66.CrossRefGoogle Scholar
  13. 13.
    Lashutka MK, Chandra A, Murray HN, Phillips GS, Hiestand BC. The relationship of intraocular pressure to intracranial pressure. Ann Emerg Med. 2004;43(5):585–91.CrossRefGoogle Scholar
  14. 14.
    Lehman RA, Krupin T, Podos SM. Experimental effect of intracranial hypertension upon intraocular pressure. J Neurosurg. 1972;36(1):60–6.CrossRefGoogle Scholar
  15. 15.
    Nakano J, Chang AC, Fisher RG. Effects of prostaglandins E 1, E 2, A 1, A 2, and F 2 on canine carotid arterial blood flow, cerebrospinal fluid pressure, and intraocular pressure. J Neurosurg. 1973;38(1):32–9.CrossRefGoogle Scholar
  16. 16.
    Sajjadi SA, Harirchian MH, Sheikhbahaei N, Mohebbi MR, Malekmadani MH, Saberi H. The relation between intracranial and intraocular pressures: study of 50 patients. Ann Neurol. 2006;59(5):867–70.CrossRefGoogle Scholar
  17. 17.
    Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67–83.CrossRefGoogle Scholar
  18. 18.
    Pircher A, Remonda L, Weinreb RN, Killer HE. Translaminar pressure in Caucasian normal tension glaucoma patients. Acta Ophthalmol. 2017;95(7):e524–31.CrossRefGoogle Scholar
  19. 19.
    Kirk T, Jones K, Miller S, Corbett J. Measurement of intraocular and intracranial pressure: is there a relationship? Ann Neurol. 2011;70(2):323–6.CrossRefGoogle Scholar
  20. 20.
    Czarnik T, Gawda R, Latka D, Kolodziej W, Sznajd-Weron K, Weron R. Noninvasive measurement of intracranial pressure: is it possible? J Trauma. 2007;62(1):207–11.CrossRefGoogle Scholar
  21. 21.
    Han Y, McCulley TJ, Horton JC. No correlation between intraocular pressure and intracranial pressure. Ann Neurol. 2008;64(2):221–4.CrossRefGoogle Scholar
  22. 22.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal fluid pressure in Glaucoma. A prospective study. Ophthalmology [Internet]. 2010;117(2):259–66. Available from:.  https://doi.org/10.1016/j.ophtha.2009.06.058.CrossRefGoogle Scholar
  23. 23.
    Samuels BC, Hammes NM, Johnson PL, Shekhar A, McKinnon SJ, Rand AR. Dorsomedial/perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Investig Ophthalmol Vis Sci. 2012;53(11):7328–35.CrossRefGoogle Scholar
  24. 24.
    Berdahl JP, Fleischman D, Zaydlarova J, Stinnett S, Allingham RR, Fautsch MP. Body mass index has a linear relationship with cerebrospinal fluid pressure. Investig Opthalmol Vis Sci [Internet]. 2012;53(3):1422.  https://doi.org/10.1167/iovs.11-8220.CrossRefGoogle Scholar
  25. 25.
    Mitchell P, Lee AJ, Wang JJ, Rochtchina E. Intraocular pressure over the clinical range of blood pressure: blue mountains eye study findings. Am J Ophthalmol. 2005;140(1):131–2.CrossRefGoogle Scholar
  26. 26.
    Xu L, Wang H, Wang Y, Jonas JB. Intraocular pressure correlated with arterial blood pressure: the Beijing Eye Study. Am J Ophthalmol. 2007;144(3):461–2.CrossRefGoogle Scholar
  27. 27.
    Leske MC, Wu S-Y, Hennis A, Honkanen R, Nemesure B. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008;115(1):85–93.CrossRefGoogle Scholar
  28. 28.
    Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107(7):1287–93.CrossRefGoogle Scholar
  29. 29.
    Hulsman CAA, Vingerling JR, Hofman A, Witteman JCM, de Jong PTVM. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol (Chicago, IL: 1960). 2007;125(6):805–12.CrossRefGoogle Scholar
  30. 30.
    BEK K, Klein R, Knudtson MD. Intraocular pressure and systemic blood pressure: longitudinal perspective: the Beaver Dam Eye Study. Br J Ophthalmol. 2005;89:284–7.CrossRefGoogle Scholar
  31. 31.
    Orzalesi N, Rossetti L, Omboni S. Vascular risk factors in glaucoma: the results of a national survey. Graefes Arch Clin Exp Ophthalmol. 2007;245(6):795–802.CrossRefGoogle Scholar
  32. 32.
    Mitchell P, Smith W, Chey T, Healey PR. Open-angle glaucoma and diabetes: the Blue Mountains Eye Study, Australia. Ophthalmology. 1997;104(4):712–8.CrossRefGoogle Scholar
  33. 33.
    Rouhiainen HJ, Terasvirta ME. Hemodynamic variables in progressive and non-progressive low tension glaucoma. Acta Ophthalmol. 1990;68(1):34–6.CrossRefGoogle Scholar
  34. 34.
    Wang N, Peng Z, Fan B, Liu Y, Dong X, Liang X, et al. Case control study on the risk factors of primary open angle glaucoma in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2002;23(4):293–6.PubMedGoogle Scholar
  35. 35.
    Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980;24(6):621–64.CrossRefGoogle Scholar
  36. 36.
    Leighton DA, Phillips CI. Systemic blood pressure in open-angle glaucoma, low tension glaucoma, and the normal eye. Br J Ophthalmol. 1972;56:447–53.CrossRefGoogle Scholar
  37. 37.
    Kashiwagi K, Hosaka O, Kashiwagi F, Taguchi K, Mochizuki J, Ishii H, et al. Systemic circulatory parameters. Comparison between patients with normal tension glaucoma and normal subjects using ambulatory monitoring. Jpn J Ophthalmol. 2001;45(4):388–96.CrossRefGoogle Scholar
  38. 38.
    Goldberg I, Hollows FC, Kass MA, Becker B. Systemic factors in patients with low-tension glaucoma. Br J Ophthalmol. 1981;65:56–62.CrossRefGoogle Scholar
  39. 39.
    Dielemans I, Vingerling JR, Wolfs RC, Hofman A, Grobbee DE, de Jong PT. The prevalence of primary open-angle glaucoma in a population-based study in The Netherlands. The Rotterdam Study. Ophthalmology. 1994;101(11):1851–5.CrossRefGoogle Scholar
  40. 40.
    Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–72.CrossRefGoogle Scholar
  41. 41.
    Topouzis F, Coleman AL, Harris A, Jonescu-Cuypers C, Yu F, Mavroudis L, et al. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki eye study. Am J Ophthalmol. 2006;142(1):60–7.CrossRefGoogle Scholar
  42. 42.
    Collignon N, Dewe W, Guillaume S, Collignon-Brach J. Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol. 1998;22(1):19–25.CrossRefGoogle Scholar
  43. 43.
    Demailly P, Cambien F, Plouin PF, Baron P, Chevallier B. Do patients with low tension glaucoma have particular cardiovascular characteristics? Ophthalmologica. 1984;188(2):65–75.CrossRefGoogle Scholar
  44. 44.
    Graham SL, Drance SM. Nocturnal hypotension: role in glaucoma progression. Surv Ophthalmol. 1999;43(Suppl 1):S10–6.CrossRefGoogle Scholar
  45. 45.
    Graham SL, Drance SM, Wijsman K, Douglas GR, Mikelberg FS. Ambulatory blood pressure monitoring in glaucoma. The nocturnal dip. Ophthalmology. 1995;102(1):61–9.CrossRefGoogle Scholar
  46. 46.
    Kaiser HJ, Flammer J, Burckhardt D. Silent myocardial ischemia in glaucoma patients. Ophthalmologica. 1993;207(1):6–7.CrossRefGoogle Scholar
  47. 47.
    Sachsenweger R. The influence of hypertension on the prognosis of glaucoma. Klin Monatsbl Augenheilkd. 1963;142:625–33.PubMedGoogle Scholar
  48. 48.
    Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117(5):603–24.CrossRefGoogle Scholar
  49. 49.
    Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol (Chicago, IL: 1960). 2002;120(6):714–30.CrossRefGoogle Scholar
  50. 50.
    Jonas JB, Wang N. Association between arterial blood pressure, cerebrospinal fluid pressure and intraocular pressure in the pathophysiology of optic nerve head diseases. Clin Exp Ophthalmol. 2012;40:e233–4.CrossRefGoogle Scholar
  51. 51.
    Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Meiliuniene I, Siesky B, et al. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol. 2014;2014:937360.CrossRefGoogle Scholar
  52. 52.
    Emre M, Orgul S, Gugleta K, Flammer J. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol. 2004;88(5):662–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Eye Clinic, Lithuanian University of Health SciencesKaunasLithuania

Personalised recommendations