Translaminar Pressure Difference

  • Lina SiaudvytyteEmail author


Growing evidence suggests a possible link between intracranial pressure and the pathogenesis of glaucomatous optic neuropathy, a low cerebrospinal fluid pressure in the retrobulbar region of the orbit may theoretically have a similar effect as an increased intraocular pressure on translaminar pressure difference.


  1. 1.
    Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89(2):142–8.CrossRefGoogle Scholar
  2. 2.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal fluid pressure in Glaucoma. A prospective study. Ophthalmology [Internet]. 2010;117(2):259–66. Scholar
  3. 3.
    Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763–8.CrossRefGoogle Scholar
  4. 4.
    Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci [Internet]. 2008;49(12):5412–8. CrossRefGoogle Scholar
  5. 5.
    Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Meiliuniene I, Siesky B, et al. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol. 2014;2014:937360.CrossRefGoogle Scholar
  6. 6.
    Siaudvytyte L, Januleviciene I, Daveckaite A, Ragauskas A, Siesky B, Harris A. Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures. Br J Ophthalmol. 2016;100:1134–8.CrossRefGoogle Scholar
  7. 7.
    Jonas JB, Nangia V, Wang N, Bhate K, Nangia P, Nangia P, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The Central India Eye and Medical Study. PLoS One. 2013;8(12):2–9.CrossRefGoogle Scholar
  8. 8.
    Jonas JB, Wang NL, Wang YX, You QS, Xie XB, Yang DY, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011. Acta Ophthalmol. 2015;93(1):e7–13.CrossRefGoogle Scholar
  9. 9.
    Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House OH, et al. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39(8):1419–28.PubMedGoogle Scholar
  10. 10.
    Gilland O. Normal cerebrospinal-fluid pressure. N Engl J Med. 1969;280(16):904–5.PubMedGoogle Scholar
  11. 11.
    Greenfield DS, Wanichwecharungruang B, Liebmann JM, Ritch R. Pseudotumor cerebri appearing with unilateral papilledema after trabeculectomy. Arch Ophthalmol (Chicago, IL: 1960). 1997;115:423–6.CrossRefGoogle Scholar
  12. 12.
    Burgoyne CF, Downs JC, Bellezza AJ, Suh J-KF, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73.CrossRefGoogle Scholar
  13. 13.
    Lee DS, Lee EJ, Kim T-W, Park YH, Kim J, Lee JW, et al. Influence of translaminar pressure dynamics on the position of the anterior lamina cribrosa surface. Invest Ophthalmol Vis Sci. 2015;56(5):2833–41.CrossRefGoogle Scholar
  14. 14.
    Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH. Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Investig Ophthalmol Vis Sci. 2002;43(10):3236–42.Google Scholar
  15. 15.
    Zhao D, He Z, Vingrys AJ, Bui BV, Nguyen CTO. The effect of intraocular and intracranial pressure on retinal structure and function in rats. Physiol Rep. 2015;3(8):e12507.CrossRefGoogle Scholar
  16. 16.
    Volkov VV. Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh. 1976;31(7):500–4.PubMedGoogle Scholar
  17. 17.
    Morgan WH, Yu DY, Balaratnasingam C. The role of cerebrospinal fluid pressure in Glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma [Internet]. 2008;17(5):408–13. CrossRefGoogle Scholar
  18. 18.
    Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol (Chicago, IL: 1960). 1991;109(8):1090–5.CrossRefGoogle Scholar
  19. 19.
    The Advanced Glaucoma Intervention Study (AGIS). 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429–40.CrossRefGoogle Scholar
  20. 20.
    Jonas JB, Wang N, Nangia V. Ocular perfusion pressure vs estimated trans–lamina cribrosa pressure difference in glaucoma: the Central India Eye and Medical Study (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc. 2015;113:16.Google Scholar
  21. 21.
    Li L, Li C, Zhong H, Tao Y, Yuan Y, Pan C-W. Estimated cerebrospina fluid pressure and the 5-year incidence of primary open-angle glaucoma in a Chinese population. PLoS One. 2016;11:e0162862.CrossRefGoogle Scholar
  22. 22.
    Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1057–63.CrossRefGoogle Scholar
  23. 23.
    Pircher A, Remonda L, Weinreb RN, Killer HE. Translaminar pressure in Caucasian normal tension glaucoma patients. Acta Ophthalmol. 2017;95(7):e524–31.CrossRefGoogle Scholar
  24. 24.
    Linden C, Qvarlander S, Johannesson G, Johansson E, Ostlund F, Malm J, et al. Normal-tension glaucoma has normal intracranial pressure: a prospective study of intracranial pressure and intraocular pressure in different body positions. Ophthalmology. 2018;125(3):361–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Eye Clinic, Lithuanian University of Health SciencesKaunasLithuania

Personalised recommendations