Advertisement

Function Loss

  • Ruta Maciulaitiene
  • Ingrida Januleviciene
Chapter

Abstract

Glaucoma is a condition that causes progressive retinal ganglion cell (RGC) loss, resulting in structural changes and deterioration of visual function. Continuous damage to the cells of visual system can negatively affect a broad spectrum of everyday life activities and vision related quality of life (QoL). Patients may sense reduction in contrast sensitivity at relatively early stages of glaucoma [1]. As disease progresses visual acuity and visual field sensitivity gradually diminishes, thus deteriorating vision related QoL [2]. Patients may experience difficulties while walking, driving, reading, seeing at night, adjusting to different levels of light, seeing peripheral and moving objects [3, 4].

References

  1. 1.
    Lahav K, Levkovitch-Verbin H, Belkin M, Glovinsky Y, Polat U. Reduced mesopic and photopic foveal contrast sensitivity in glaucoma. Arch Ophthalmol. 2011;129(1):16–22.CrossRefGoogle Scholar
  2. 2.
    Chan EW, Chiang PPC, Liao J, Rees G, Wong TY, Lam JSH, et al. Glaucoma and associated visual acuity and field loss significantly affect glaucoma-specific psychosocial functioning. Ophthalmology. 2015;122(3):494–501.CrossRefGoogle Scholar
  3. 3.
    Ramulu PY, Maul E, Hochberg C, Chan ES, Ferrucci L, Friedman DS. Real-world assessment of physical activity in glaucoma using an accelerometer. Ophthalmology. 2012;119(6):1159–66.CrossRefGoogle Scholar
  4. 4.
    Aspinall PA, Johnson ZK, Azuara-Blanco A, Montarzino A, Brice R, Vickers A. Evaluation of quality of life and priorities of patients with glaucoma. Invest Ophthalmol Vis Sci. 2008;49(5):1907–15.CrossRefGoogle Scholar
  5. 5.
    Turano KA, Broman AT, Bandeen-Roche K, Munoz B, Rubin GS, West SK. Association of visual field loss and mobility performance in older adults: Salisbury Eye Evaluation Study. Optom Vis Sci. 2004;81(5):298–307.CrossRefGoogle Scholar
  6. 6.
    Turano KA, Rubin GS, Quigley HA. Mobility performance in glaucoma. Investig Ophthalmol Vis Sci. 1999;40(12):2803–9.Google Scholar
  7. 7.
    Friedman DS, Freeman E, Munoz B, Jampel HD, West SK. Glaucoma and mobility performance. The Salisbury Eye Evaluation Project. Ophthalmology. 2007;114(12):2232–8.CrossRefGoogle Scholar
  8. 8.
    Redfern MS, Yardley L, Bronstein AM. Visual influences on balance. J Anxiety Disord. 2001;15(1–2):81–94.CrossRefGoogle Scholar
  9. 9.
    Kotecha A, Richardson G, Chopra R, Fahy RTA, Garway-Heath DF, Rubin GS. Balance control in glaucoma. Investig Ophthalmol Vis Sci. 2012;53(12):7795–801.CrossRefGoogle Scholar
  10. 10.
    Black AA, Wood JM, Lovie-Kitchin JE, Newman BM. Visual field loss and falls among older adults with glaucoma. Invest Ophthalmol Vis Sci. 2008;85(6):489–97.Google Scholar
  11. 11.
    Cheng HC, Guo CY, Chen MJ, Ko YC, Huang N, Liu CJL. Patient-reported vision-related quality of life differences between superior and inferior hemifield visual field defects in primary open-angle glaucoma. JAMA Ophthalmol. 2015;133(3):269–75.CrossRefGoogle Scholar
  12. 12.
    Black AA, Wood JM, Lovie-Kitchin JE. Inferior field loss increases rate of falls in older adults with glaucoma. Optom Vis Sci. 2011;88(11):1275–82.CrossRefGoogle Scholar
  13. 13.
    Stevens JA, Corso PS, Finkelstein EA, Miller TR. The costs of fatal and non-fatal falls among older adults. Inj Prev. 2006;12(5):290–5.CrossRefGoogle Scholar
  14. 14.
    Coleman AL, Cummings SR, Yu F, Kodjebacheva G, Ensrud KE, Gutierrez P, et al. Binocular visual-field loss increases the risk of future falls in older white women. J Am Geriatr Soc. 2007;55(3):357–64.CrossRefGoogle Scholar
  15. 15.
    Dhital A, Pey T, Stanford MR. Visual loss and falls: a review. Eye (Lond). 2010;24(9):1437–46.CrossRefGoogle Scholar
  16. 16.
    Freeman EE, Munoz B, Rubin G, West SK. Visual field loss increases the risk of falls in older adults: the Salisbury Eye Evaluation. Invest Opthalmol Vis Sci. 2007;48(10):4445.CrossRefGoogle Scholar
  17. 17.
    Tanabe S, Yuki K, Ozeki N, Shiba D, Tsubota K. The association between primary open-angle glaucoma and fall: an observational study. Clin Ophthalmol. 2012;6:327–31.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ramulu PY, van Landingham SW, Massof RW, Chan ES, Ferrucci L, Friedman DS. Fear of falling and visual field loss from glaucoma. Ophthalmology. 2012;119(7):1352–8.CrossRefGoogle Scholar
  19. 19.
    Haymes SA, Leblanc RP, Nicolela MT, Chiasson LA, Chauhan BC. Risk of falls and motor vehicle collisions in glaucoma. Investig Ophthalmol Vis Sci. 2007;48(3):1149–55.CrossRefGoogle Scholar
  20. 20.
    Yuki K, Asaoka R, Tsubota K. Investigating the influence of visual function and systemic risk factors on falls and injurious falls in glaucoma using the structural equation modeling. PLoS One. 2015;10(6):1–13.CrossRefGoogle Scholar
  21. 21.
    Ivers RQ, Norton R, Cumming RG, Butler M, Campbell AJ. Visual impairment and risk of hip fracture. Am J Epidemiol. 2000;152(7):633–9.CrossRefGoogle Scholar
  22. 22.
    Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82(8):1050–6.CrossRefGoogle Scholar
  23. 23.
    Kressiq RW, Herrmann FR, Grandjean R, Michel JP, Beauchet O. Gait variability while dual-tasking: fall predictor in older inpatients? Aging Clin Exp Res. 2008;20(2):123–30.CrossRefGoogle Scholar
  24. 24.
    Mihailovic A, Swenor BK, Friedman DS, West SK, Gitlin LN, Ramulu PY. Gait implications of visual field damage from Glaucoma. Transl Vis Sci Technol. 2017;6(3):23.CrossRefGoogle Scholar
  25. 25.
    Owsley C, McGwin G Jr, Ball K. Vision impairment, eye disease, and injurious motor vehicle crashes in the elderly. Ophthalmic Epidemiol. 1998;5(2):101–13.CrossRefGoogle Scholar
  26. 26.
    McGwin G, Xie A, Mays A, Joiner W, DeCarlo DK, Hall TA, et al. Visual field defects and the risk of motor vehicle collisions among patients with glaucoma. Invest Opthalmol Vis Sci. 2005;46(12):4437.CrossRefGoogle Scholar
  27. 27.
    Adler G, Bauer MJ, Rottunda SKM. Driving habits and patterns in older men with glaucoma. Soc Work Health Care. 2005;40:75–87.CrossRefGoogle Scholar
  28. 28.
    McGwin G, Mays A, Joiner W, DeCarlo DK, McNeal S, Owsley C. Is glaucoma associated with motor vehicle collision involvement and driving avoidance? Investig Ophthalmol Vis Sci. 2004;45(11):3934–9.CrossRefGoogle Scholar
  29. 29.
    Freeman EE, Muñoz B, Turano KA, West SK. Measures of visual function and their association with driving modification in older adults. Investig Ophthalmol Vis Sci. 2006;47(2):514–20.CrossRefGoogle Scholar
  30. 30.
    Haymes SA, LeBlanc RP, Nicolela MT, Chiasson LA, Chauhan BC. Glaucoma and on-road driving performance. Investig Ophthalmol Vis Sci. 2008;49(7):3035–41.CrossRefGoogle Scholar
  31. 31.
    Mangione CM, Berry S, Spritzer K, et al. Identifying the content area for the 51-item National eye Institute visual function questionnaire: results from focus groups with visually impaired persons. Arch Ophthalmol. 1998;116:227–33.PubMedGoogle Scholar
  32. 32.
    Nelson P, Aspinall P, O’Brien C. Patients’ perception of visual impairment in glaucoma: a pilot study. Br J Ophthalmol. 1999;83(5):546–52.CrossRefGoogle Scholar
  33. 33.
    Ramulu PY, Swenor BK, Jefferys JL, Friedman DS, Rubin GS. Difficulty with out-loud and silent reading in Glaucoma. Investig Ophthalmol Vis Sci. 2013;54(1):666–72.CrossRefGoogle Scholar
  34. 34.
    Smith ND, Glen FC, Mönter VM, Crabb DP. Using eye tracking to assess reading performance in patients with glaucoma: a within-person study. J Ophthalmol. 2014;2014:1–10.CrossRefGoogle Scholar
  35. 35.
    McKean-Cowdin R, Wang Y, Wu J, Azen SP, Varma R, Los Angeles Latino Eye Study Group. Impact of visual field loss on health-related quality of life in Glaucoma. The Los Angeles Latino Eye Study. Ophthalmology. 2008;115(6):941–8.CrossRefGoogle Scholar
  36. 36.
    Nelson P, Aspinall P, Papasouliotis O, Worton BOC. Quality of life in glaucma and its relationship with visual function. J Glaucoma. 2003;12:139–50.CrossRefGoogle Scholar
  37. 37.
    Legge GE, Ahn SJ, Klitz TS, Luebker A. Psychophysics of reading-{XVI.} the visual span in normal and low vision. Vision Res. 1997;37(14):1999–2010.CrossRefGoogle Scholar
  38. 38.
    Legge GEBC. Does print size matter for reading? A review of findings from vision science and typography. J Vis. 2011;11(5):8.CrossRefGoogle Scholar
  39. 39.
    Hood DC, Raza AS, de Moraes CGV, Odel JG, Greenstein VC, Liebmann JM, et al. Initial arcuate defects within the central 10 degrees in glaucoma. Investig Ophthalmol Vis Sci. 2011;52(2):940–6.CrossRefGoogle Scholar
  40. 40.
    Hood DC, Raza AS, Moraes CG, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32C:1–21.CrossRefGoogle Scholar
  41. 41.
    Hood DC, Raza AS, de Moraes CGV, Johnson CA, Liebmann JM, Ritch R. The nature of macular damage in Glaucoma as revealed by averaging optical coherence tomography data. Transl Vis Sci Technol. 2012;1(1):3.CrossRefGoogle Scholar
  42. 42.
    Burton R, Crabb DP, Smith ND, Glen FC, Garway-Heath DF. Glaucoma and reading: exploring the effects of contrast lowering of text. Optom Vis Sci. 2012;89(9):1282–7.CrossRefGoogle Scholar
  43. 43.
    Kwon MY, Liu R, Patel BN, Girkin C. Slow reading in glaucoma: is it due to the shrinking visual span in central vision? Investig Ophthalmol Vis Sci. 2017;58(13):5810–8.CrossRefGoogle Scholar
  44. 44.
    Ramulu PY, West SKMB, et al. Glaucoma and reading speed: the Salisbury eye evaluation project. Arch Ophthalmol. 2009;127(1):82–7.CrossRefGoogle Scholar
  45. 45.
    Viswanathan AC. Severity and stability of glaucoma. Arch Ophthalmol. 1999;117:450–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ruta Maciulaitiene
    • 1
  • Ingrida Januleviciene
    • 1
  1. 1.Ophthalmology Department, Medical AcademyLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations