OCT-Angiography Appliance in Glaucoma

  • Akvile StoskuvieneEmail author


Novel imaging techniques promotes and maintains the continuous development in ophthalmology. Optical coherence tomography angiography (OCT-A) is a new modality of angiography presented in recent years. This technology allows non-invasively visualize the vasculature in the retina and the choroid with high resolution and provides greater insight into various retinal vascular pathologies.

As a valuable method OCTA is adjusted for evaluation of microvascular contribution in quite common diseases affecting the central macula (such as age-related macular, degeneration (AMD), diabetic maculopathy, retinal vascular occlusion, macular telangiectasia type 2), rarer diseases (including sickle cell retinopathy) and the optic nerve disorders [1, 2, 3, 4, 5].


  1. 1.
    Mastropasqua R, Di Antonio L, Di Staso S, et al. Optical coherence tomography angiography in retinal vascular diseases and choroidal neovascularization. J Ophthalmol. 2015;2015:343515.CrossRefGoogle Scholar
  2. 2.
    Hwang TS, Gao SS, Liu L, et al. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134:367–73.CrossRefGoogle Scholar
  3. 3.
    Thorell MR, Zhang Q, Huang Y, et al. Swept-source OCT angiography of macular telangiectasia type 2. Ophthalmic Surg Lasers Imaging Retina. 2014;45:369–80.CrossRefGoogle Scholar
  4. 4.
    Minvielle W, Caillaux V, Cohen SY, et al. Macular microangiopathy in sickle cell disease using optical coherence tomography angiography. Am J Ophthalmol. 2016;164:137–44.CrossRefGoogle Scholar
  5. 5.
    Akil H, Falavarjani KG, Sadda SR, Sadun AA. Optical coherence tomography angiography of the optic disc; an overview. J Ophthalmic Vis Res. 2017;12(1):98–105. Scholar
  6. 6.
    Petrig BL, Riva CE, Hayreh SS. Laser Doppler flowmetry and optic nerve head blood flow. Am J Ophthalmol. 1999;127(4):413–25.CrossRefGoogle Scholar
  7. 7.
    Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994;38(Suppl):S3–6.CrossRefGoogle Scholar
  8. 8.
    Prünte C, Orgül S, Flammer J. Abnormalities of microcirculation in glaucoma: facts and hints. Curr Opin Ophthalmol. 1998;9(2):50–5.CrossRefGoogle Scholar
  9. 9.
    Januleviciene I, Sliesoraityte I, Siesky B, et al. Diagnostic compatibility of structural and haemodynamic parameters in open-angle glaucoma patients. Acta Ophthalmol. 2008;86:552–7.CrossRefGoogle Scholar
  10. 10.
    Grieshaber MC, et al. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol. 2007;52(suppl 2):S144–54.CrossRefGoogle Scholar
  11. 11.
    Tektas O-Y, Lütjen-Drecoll E, Scholz M. Qualitative and quantitative morphologic changes in the vasculature and extracellularmatrixoftheprelaminaropticnerveheadineyes with POAG. Invest Ophthalmol Vis Sci. 2010;51(10):5083–91.CrossRefGoogle Scholar
  12. 12.
    Gao SS, Jia Y, Zhang M, et al. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT27–36.CrossRefGoogle Scholar
  13. 13.
    Koustenis A, et al. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2017;101:16–20. Scholar
  14. 14.
    Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20:4710–25.CrossRefGoogle Scholar
  15. 15.
    Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3:3127–37.CrossRefGoogle Scholar
  16. 16.
    Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20:100901.CrossRefGoogle Scholar
  17. 17.
    Stanga PE, Tsamis E, Papayannis A, et al. Swept-source optical coherence tomography angio™ (Topcon Corp, Japan): technology review. Dev Ophthalmol. 2016;56:13–7.CrossRefGoogle Scholar
  18. 18.
    Burak T. Optical coherence tomography angiography—a general view. Eur Ophthalmic Rev. 2016;10(1):39–42. Scholar
  19. 19.
    Wan KH, Leung CK. Optical coherence tomography angiography in glaucoma: a mini-review. F1000Res. 2017;6:1686. Scholar
  20. 20.
    Harris A, Kagemann L, Ehrlich R, Rospigliosi C, Moore D, Siesky B. Measuring and interpreting ocular blood flow and metabolism in glaucoma. J Ophthalmol. 2008;43:328–36. Scholar
  21. 21.
    Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol. 2013;13(1):36–42. Scholar
  22. 22.
    Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Gugleta K. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014;92:252–66. Scholar
  23. 23.
    Zion IB, Harris A, Moore D, et al. Interobserver repeatability of Heidelberg retinal flowmetry using pixel-by-pixel analysis. J Glaucoma. 2009;18:280–3.CrossRefGoogle Scholar
  24. 24.
    Rhee DJ. Glaucoma. Color atlas & synopsis of clinical ophthalmology. Chapter 9. 2nd ed: Wills Eye Institute. p. 136–49.Google Scholar
  25. 25.
    Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L. Doppler optical coherence tomography. Prog Retin Eye Res. 2014;41(100):26–43. Scholar
  26. 26.
    Bearelly S, Rao S, Fekrat S. Anaphylaxis following intravenous fluorescein angiography in avitreoretinal clinic: report of4 cases. Can J Ophthalmol. 2009;44:444–5.CrossRefGoogle Scholar
  27. 27.
    Cole ED, Novais EA, Louzada RN, et al. Contemporary retinal imaging techniques in diabetic retinopathy: a review. Clin Exp Ophthalmol. 2016;44:289–99.CrossRefGoogle Scholar
  28. 28.
    Chen FK, Viljoen RD, Bukowska DM. Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases. Clin Exp Ophthalmol. 2016;44:388–99.CrossRefGoogle Scholar
  29. 29.
    Kuehlewein L, Bansal M, Lenis TL, et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol. 2015;160:739–48.CrossRefGoogle Scholar
  30. 30.
    Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina. 2015;35:2163–80.CrossRefGoogle Scholar
  31. 31.
    Chen CL, Wang RK. Optical coherence tomography based angiography. Biomed Opt Express. 2017;8(2):1056–82.CrossRefGoogle Scholar
  32. 32.
    Holló G. Intrasession and between-visit variability of sector peripapillary angioflow vessel density values measured with the Angiovue optical coherence tomograph in different retinal layers in ocular hypertension and glaucoma. PLoS One. 2016;11(8):e0161631.CrossRefGoogle Scholar
  33. 33.
    Rao HL, Pradhan ZS, Weinreb RN, et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol. 2017;177:106–15.CrossRefGoogle Scholar
  34. 34.
    Lévêque PM, Zéboulon P, Brasnu E, et al. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J Ophthalmol. 2016;2016:6956717.CrossRefGoogle Scholar
  35. 35.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy glaucoma suspects, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57:451–9.CrossRefGoogle Scholar
  36. 36.
    Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133(9):1045–52.CrossRefGoogle Scholar
  37. 37.
    Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–32.CrossRefGoogle Scholar
  38. 38.
    Chen CL, Zhang A, Bojikian KD, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT475–85.CrossRefGoogle Scholar
  39. 39.
    Rao HL, Pradhan ZS, Weinreb RN, et al. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS One. 2017;12(3):e0173930.CrossRefGoogle Scholar
  40. 40.
    Muniz JA, de Athaide LM, Gomes BD, Finlay BL, Silveira LC. Ganglion cell and displaced amacrine cell density distribution in the retina of the howler monkey (Alouatta caraya). PLoS One. 2014;9:e115291. Scholar
  41. 41.
    Kim HJ, Lee SY, Park KH, Kim DM, Jeoung JW. Glaucoma diagnostic ability of layer-by-layer segmented ganglion cell complex by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57:4799–805. Scholar
  42. 42.
    Browning DJ. Anatomy and pathologic anatomy of retinal vein occlusions retinal vein occlusions. New York: Saunders; 2012. p. 12–4.CrossRefGoogle Scholar
  43. 43.
    Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–5. Scholar
  44. 44.
    Xu H, Yu J, Kong X, Sun X, Jiang C. Macular microvasculature alterations in patients with primary open-angle glaucoma: a cross-sectional study. Medicine. 2016;95:e4341.CrossRefGoogle Scholar
  45. 45.
    Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S, et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016;171:75–83. Scholar
  46. 46.
    Kim DY, Fingler J, Zawadzki RJ, Park SS, Morse LS, Schwartz DM, et al. Noninvasive imaging of the foveal avascular zone with high-speed, phase-variance optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:85–92. Scholar
  47. 47.
    Arend O, Wolf S, Jung F, Bertram B, Postgens H, Toonen H, et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol. 1991;75:514–8.CrossRefGoogle Scholar
  48. 48.
    Kuehlewein L, Tepelus TC, An L, Durbin MK, Srinivas S, Sadda SR. Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography. Invest Ophthalmol Vis Sci. 2015;56:3984–8. Scholar
  49. 49.
    Adhi M, Filho MA, Louzada RN, Kuehlewein L, de Carlo TE, Baumal CR, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:486–94. Scholar
  50. 50.
    Kwon J, Choi J, Shin JW, Lee J, Kook MS. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in Glaucoma patients with central visual field defects. Invest Ophthalmol Vis Sci. 2017;58:1637–45. Scholar
  51. 51.
    Tan CS, Lim LW, Chow VS, Chay IW, Tan S, Cheong KX, et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci. 2016;57:224–34. Scholar
  52. 52.
    Choi J, Kwon J, Shin JW, Lee J, Lee S, Kook MS. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLoS One. 2017;12(9):e0184948. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyLithuanian University of Health SciencesKaunasLithuania
  2. 2.Department of NeurologyLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations