Advertisement

Imaging Techniques of the Optic Nerve Head and Retinal Fiber Layer

  • Akvile StoskuvieneEmail author
Chapter

Abstract

Since glaucoma is the leading cause of irreversible blindness, early diagnosis and detection of progression takes important place in many clinicians everyday practice. The appearance of optic nerve head is one of the glaucoma diagnostic mainstays. However, it is not always easy to asses and even to document the changes of appearance, especially in unusual structure discs: tilted, very small or very large optic nerve discs. Written descriptions seems to be insufficient for careful follow-up. Structural characteristics can be documented by taking photos or more sophisticated scanning imaging devices that are playing an increasing role in glaucoma diagnosis, monitoring of disease progress, and quantification of structural damage [1, 2].

References

  1. 1.
    Greenfield DS, Weinreb RN. Role of optic nerve imaging in glaucoma clinical practice and clinical trials. Am J Ophthalmol. 2008;145(4):598–603.CrossRefGoogle Scholar
  2. 2.
    Sharma P, Sample PA, Schuman JS ZLM. Diagnostic tools for glaucoma detection and management. Surv Ophthalmol. 2008;53(Suppl 1):S17–32.CrossRefGoogle Scholar
  3. 3.
    European Glaucoma Society. Terminology and guidelines for glaucoma, $th edition. Savona: Dogma; 2014.Google Scholar
  4. 4.
    American Academy of Ophthalmology. Basic and clinical science course. Glaucoma. San Francisco: American Academy of Ophthalmology; 2010.Google Scholar
  5. 5.
    Fingeret M, Medeiros FA, Susanna R, et al. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry. 2005;76:661–8. [PubMed: 16298320].CrossRefGoogle Scholar
  6. 6.
    Wong D. Fundus photography and fluorescein angiography. J Ophthalmic Photogr. 1979;2:37–45.Google Scholar
  7. 7.
    Trobe JD, Glaser JS, Cassady J, et al. Nonglaucomatous excavation of the optic disc. Arch Ophthalmol. 1980;98:1046.CrossRefGoogle Scholar
  8. 8.
    Parrish RK, Schiffman JC, Feuer WJ, et al. Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders. Am J Ophthalmol. 2005;140:762–4. [PubMed: 16226544].CrossRefGoogle Scholar
  9. 9.
    Zeyen T, Miglior S, Pfeiffer N, et al. Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs. Ophthalmology. 2003;110:340–4. [PubMed: 12578778].CrossRefGoogle Scholar
  10. 10.
    Deleón-Ortega JE, Arthur SN, McGwin G, et al. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci. 2006;47:3374–80. [PubMed: 16877405].CrossRefGoogle Scholar
  11. 11.
    European Glaucoma Society. Glaucoma imaging. Savona: Dogma; 2017.Google Scholar
  12. 12.
    Rhee DJ. Glaucoma. Color atlas & synopsis of clinical ophthalmology. Chapter 9. 2nd ed: Wills Eye Institute. p. 136–49.Google Scholar
  13. 13.
    Zangwill LM, Bow C, Berry CC, Williams J, Blumenthal EZ, Sánchez-Galeana C, Weinreb RN. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol. 2001;119(July):985–93.  https://doi.org/10.1001/archopht.119.7.985.CrossRefPubMedGoogle Scholar
  14. 14.
    Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scaning laser ophthalmoscope. Ophthalmology. 1998;105:1557–63.CrossRefGoogle Scholar
  15. 15.
    Oddone F, Centofanti M, Rosseti L, et al. Exploring the Reidelberg retinal Tomograph 3 diagnostic accuracy across disc sizes and glaucoma stages: a multicenter study. Ophthalmology. 2008;115:1358–65.CrossRefGoogle Scholar
  16. 16.
    Miglior S, Albe E, Guareschi M, et al. Intraobserver and intraobserver reproducibility in the evaluation of optic disc stereometric parameters by Reidelberg Retina Tomograph. Ophthalmology. 2002;109:1072–7.CrossRefGoogle Scholar
  17. 17.
    Harasymowycz PJ, Papamatheakis DG, Fansi AK. Validity of screening for glaucomatous optic nerve damage using confocal laser ophthalmoscopy (Reidelberg Retina Tomograph II) in high risk populations. A pilot study. Ophthalmology. 2007;112:2164–71.CrossRefGoogle Scholar
  18. 18.
    Michelessi M, Lucenteforte E, Oddone F, et al. Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochranes Database Syst Rev. 2015;11:CD008803.Google Scholar
  19. 19.
    Chauhan BC, Nicolela MT, Artes PH. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. Ophthalmology. 2009;116(11):2110–8.  https://doi.org/10.1016/j.ophtha.2009.04.031. Epub 2009 Jun 4.CrossRefPubMedGoogle Scholar
  20. 20.
    Iester MM, Wollstein G, Bilonick RA, Xu J, Ishikawa H, Kagemann L, Science V. Agreement among graders on Heidelberg retina tomograph (HRT) topographic change analysis (TCA) glaucoma progression interpretation. Br J Ophthalmol. 2016;99(4):519–23.  https://doi.org/10.1136/bjophthalmol-2014-305377.Agreement.CrossRefGoogle Scholar
  21. 21.
    Zangwill LM, Weinreb RN, Beiser JA, et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle Glaucoma: confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study group. Arch Ophthalmol. 2005;123(9):1188–97.  https://doi.org/10.1001/archopht.123.9.1188.CrossRefPubMedGoogle Scholar
  22. 22.
    Sehi M, Guaqueta DC, Feuer WJ, Greenfield DS. Scanning laser polarimetry with variable and enhanced corneal compensation in normal and glaucomatous eyes. Am J Ophthalmol. 2007;143(2):272–9.CrossRefGoogle Scholar
  23. 23.
    Weinreb RN, Shakiba S, Zangwill L. Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes. Am J Ophthalmol. 1995;119(5):627–36.CrossRefGoogle Scholar
  24. 24.
    Badala F, Nouri-Mahdavi K, Raoof DA, Leeprechanon N, Law SK, Caprioli J. Optic disc and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol. 2007;144(5):724–32.CrossRefGoogle Scholar
  25. 25.
    Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN. Detection of Glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci. 2017;48(7):3146–53.  https://doi.org/10.1167/iovs.06-1139.CrossRefGoogle Scholar
  26. 26.
    Bowd C, Medeiros FA, Zhang Z, Zangwill LM, Lee T, Sejnowski TJ, Michael H. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci. 2010;46(4):1322–9.  https://doi.org/10.1167/iovs.04-1122.CrossRefGoogle Scholar
  27. 27.
    Medeiros FA, Zangwill LM, Bowd C, et al. Fourier analysis of scanning laser polarimetry measurements with variable corneal compensation in glaucoma. Invest Ophthalmol Vis Sci. 2003;44:2606–12. [PubMed: 12766063.CrossRefGoogle Scholar
  28. 28.
    Medeiros FA, Zangwill LM, Bowd C, et al. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol. 2005;139:1010–8. [PubMed: 15953430].CrossRefGoogle Scholar
  29. 29.
    Hoh ST, Greenfield DS, Liebmann JM, et al. Factors affecting image acquisition during scanning laser polarimetry. Ophthalmic Surg Lasers. 1998;29:545–51.PubMedGoogle Scholar
  30. 30.
    Gabriele ML, Wollstein G, Ishikawa H, et al. Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci. 2011;52(5):2425–36.  https://doi.org/10.1167/iovs.10-6312.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pyo SW, Lim YJ, Lee WJ, Lee JJ. Study on application to the field of dentistry using optical coherence tomography (OCT). J Korean Acad Prosthodont. 2017;55(1):100–10.  https://doi.org/10.4047/jkap.2017.55.1.100.CrossRefGoogle Scholar
  32. 32.
    Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98:ii15–9.  https://doi.org/10.1136/bjophthalmol-2013-304326.CrossRefPubMedGoogle Scholar
  33. 33.
    Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS. Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2011;95:909–14.  https://doi.org/10.1136/bjo.2010.186924.CrossRefPubMedGoogle Scholar
  34. 34.
    Leung CK, Cheung CYL, Weinreb RN, Qiu K, Liu S, Li H, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010;51:217–22.  https://doi.org/10.1167/iovs.09-3468.CrossRefPubMedGoogle Scholar
  35. 35.
    Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003;110:177–89.CrossRefGoogle Scholar
  36. 36.
    Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44–55.  https://doi.org/10.1016/j.ajo.2004.08.069.CrossRefPubMedGoogle Scholar
  37. 37.
    Leung CKS, Chan W-M, Yung W-H, Ng ACK, Woo J, Tsang M-K, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma. Ophthalmology. 2005;112:391–400.  https://doi.org/10.1016/j.ophtha.2004.10.020.CrossRefPubMedGoogle Scholar
  38. 38.
    Mori S, Hangai M, Sakamoto A, Yoshimura N. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma. 2010;19:528–34.  https://doi.org/10.1097/IJG.0b013e3181ca7acf.CrossRefPubMedGoogle Scholar
  39. 39.
    Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma. 2011;20:252–9.  https://doi.org/10.1097/IJG.0b013e3181e079ed.CrossRefPubMedGoogle Scholar
  40. 40.
    Girkin CA, Liebmann J, Fingeret M, Greenfield DS, Medeiros F. The effects of race, optic disc area, age, and disease severity on the diagnostic performance of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:6148–53.  https://doi.org/10.1167/iovs.10-6698.CrossRefPubMedGoogle Scholar
  41. 41.
    Yang Z, Tatham AJ, Zangwill LM, et al. Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. Am J Ophthalmol. 2015;159:193–201.CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Kansal V, Armstrong JJ, Pintwala R, Hutnik C. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS One. 2018;13(1):e0190621.  https://doi.org/10.1371/journal.pone.0190621.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Radhakrishnan S, Huang D, Smith SD. Optical coherence tomography imaging of the anterior chamber angle. Ophthalmol Clin N Am. 2005;18:375–81.CrossRefGoogle Scholar
  45. 45.
    Zhang C, Tatham AJ, Medeiros FA, Zangwill LM, Yang Z, et al. Assessment of choroidal thickness in healthy and glaucomatous eyes using swept source optical coherence tomography. PLoS One. 2014;9(10):e109683.  https://doi.org/10.1371/journal.pone.0109683.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sigal IA, Wang B, Strouthidis NG, Akagi T, Girard MJA. Recent advances in OCT imaging of the lamina cribrosa. Br J Ophthalmol. 2014;98(Suppl 2):ii34–9.  https://doi.org/10.1136/bjophthalmol-2013-304751.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyLithuanian University of Health SciencesKaunasLithuania
  2. 2.Department of NeurologyLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations