Myocardial Stunning

  • Dennis V. CokkinosEmail author


Myocardial stunning (STUN) is defined as the delayed recovery of systolic and diastolic cardiac function after reperfusion, despite restoration of normal flow. Its delayed reversibility implies that no irreversible cardiac damage has been caused. It is seen in many instances relevant to coronary artery disease, such as coronary angioplasty, angina pectoris, acute myocardial infarction, and exercise. It can be seen after cardiac surgery and tachycardia. More recently described situations are hemodialysis, sepsis, and the Takotsubo syndrome, i.e., cardiac dysfunction after severe mental stress. The cause of STUN is increased ROS production and calcium overload. Therapeutic aspects include the reversal of coronary artery stenosis and prevention or reversal of adrenergic activation.


Stunning PTCA Angina pectoris Exercise myocardial infarction Takotsubo syndrome Hemodialysis 


  1. 1.
    Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66:1146–9.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56:978–85.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Weiner JM, Astein CS, Arthur JH, Pirzada FA, Hood WB Jr. Persistence of myocardial injury following brief periods of coronary occlusion. Cardiovasc Res. 1976;10:678–86.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kloner RA, Ellis SG, Lange R, Braunwald E. Studies of experimental coronary artery reperfusion. Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation. 1983;68:I8–15.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bolli R, Zhu WX, Thornby JI, O'Neill PG, Roberts R. Time course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Phys. 1988;254:H102–14.Google Scholar
  6. 6.
    Bolli R, Marbán E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79:609–34.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bolli R. Myocardial ‘stunning’ in man. Circulation. 1992;86:1671–91.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kloner RA, Bolli R, Marban E, Reinlib L, Braunwald E. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop. Circulation. 1998;97:1848–67.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cohen MV, Downey JM. Myocardial stunning in dogs: preconditioning effect and influence of coronary collateral flow. Am Heart J. 1990;120:282–91.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lavallee M, Cox D, Patrick TA, Vatner SF. Salvage of myocardial function by coronary artery reperfusion 1, 2, and 3 hours after occlusion in conscious dogs. Circ Res. 1983;53:235–47.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bush LR, Buja LM, Samowitz W, Rude RE, Wathen M, Tilton GD, et al. Recovery of left ventricular segmental function after long-term reperfusion following temporary coronary occlusion in conscious dogs. Comparison of 2- and 4-hour occlusions. Circ Res. 1983;53:248–63.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Verani MS, Bolli R, Tadros S, Myers ML, Borges Neto S, Jain A, et al. Dissociation between global and regional systolic and diastolic ventricular function during coronary occlusion and reperfusion. Heart J. 1987;114:687–95.Google Scholar
  13. 13.
    Serruys PW, Wijns W, van den Brand M, Meij S, Slager C, Schuurbiers JC, et al. Left ventricular performance, regional blood flow, wall motion, and lactate metabolism during transluminal angioplasty. Circulation. 1984;70:25–36.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sheiban I, Tonni S, Marini A, Trevi G. Clinical and therapeutic implications of chronic left ventricular dysfunction in coronary artery disease. Am J Cardiol. 1995;75:23E–30E.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wijns W, Serruys PW, Slager CJ, Grimm J, Krayenbuehl HP, Hugenholtz PG, et al. Effect of coronary occlusion during percutaneous transluminal angioplasty in humans on left ventricular chamber stiffness and regional diastolic pressure-radius relations. J Am Coll Cardiol. 1986;7:455–63.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Nixon JV, Brown CN, Smitherman TC. Identification of transient and persistent segmental wall motion abnormalities in patients with unstable angina by two-dimensional echocardiography. Circulation. 1982;65:1497–503.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    de Feyter PJ, Suryapranata H, Serruys PW, Beatt K, van den Brand M, Hugenholtz PG. Effects of successful percutaneous transluminal coronary angioplasty on global and regional left ventricular function in unstable angina pectoris. Am J Cardiol. 1987;60:993–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Renkin J, Wijns W, Ladha Z, Col J. Reversal of segmental hypokinesis by coronary angioplasty in patients with unstable angina, persistent T wave inversion, and left anterior descending coronary artery stenosis. Additional evidence for myocardial stunning in humans. Circulation. 1990;82:913–21.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Bolli R, Hartley CJ, Rabinovitz RS. Clinical Relevance of Myocardial Stunning. In: Opie LH, editor. Stunning, hibernating and calcium in myocardial ischemia and reperfusion: Kluver Academic publishers; 1992. p. 56–82.Google Scholar
  20. 20.
    Tamaki N, Yasuda T, Moore RH, Gill JB, Boucher CA, Hutter AM Jr, et al. Continuous monitoring of left ventricular function by an ambulatory radionuclide detector in patients with coronary artery disease. J Am Coll Cardiol. 1988;12:669–79.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Mathias P, Kerin NZ, Blevins RD, Cascade P, Rubenfire M. Coronary vasospasm as a cause of stunned myocardium. Am Heart J. 1987;113:383–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sakata K, Miura F, Sugino H, Saegusa T, Shirotani M, Yoshida H, et al. Assessment of regional sympathetic nerve activity in vasospastic angina: analysis of iodine 123-labeled metaiodobenzylguanidine scintigraphy. Am Heart J. 1997;133:484–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Stack RS, Phillips HR 3rd, Grierson DS, Behar VS, Kong Y, Peter RH, et al. Functional improvement of jeopardized myocardium following intracoronary streptokinase infusion in acute myocardial infarction. J Clin Invest. 1983;72:84–95.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Schmidt WG, Sheehan FH, von Essen R, Uebis R, Effert S. Evolution of left ventricular function after intracoronary thrombolysis for acute myocardial infarction. Am J Cardiol. 1989;63:497–502.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Bourdillon PD, Broderick TM, Williams ES, Davis C, Dillon JC, Armstrong WF, et al. Early recovery of regional left ventricular function after reperfusion in acute myocardial infarction assessed by serial two-dimensional echocardiography. Am J Cardiol. 1989;63:641–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kokkinos AD. Investigation of cardioprotection induced by ischemic preconditioning in ischemic heart which have been subjected to an initial ischemic episode PhD. Thesis Athens; 2002, p. 19–22.Google Scholar
  27. 27.
    Sheehan FH, Mathey DG, Schofer J, Dodge HT, Bolson EL. Factors that determine recovery of left ventricular function after thrombolysis in patients with acute myocardial infarction. Circulation. 1985;71:1121–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Williamson BD, Lim MJ, Buda AJ. Transient left ventricular filling abnormalities (diastolic stunning) after acute myocardial infarction. Am J Cardiol. 1990;66:897–903.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Investig. 1979;40:633–44.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ellis SG, Henschke CI, Sandor T, Wynne J, Braunwald E, Kloner RA. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol. 1983;1:1047–55.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Theroux P, Ross J Jr, Franklin D, Kemper WS, Sasayama S. Coronary arterial reperfusion. III. Early and late effects on regional myocardial function and dimensions in conscious dogs. Am J Cardiol. 1976;38:599–606.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hittinger L, Shannon RP, Kohin S, Manders WT, Kelly P, Vatner SF. Exercise-induced subendocardial dysfunction in dogs with left ventricular hypertrophy. Circ Res. 1990;66:329–43.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Emmett L, Magee M, Freedman SB, Van der Wall H, Bush V, Trieu J, et al. The role of left ventricular hypertrophy and diabetes in the presence of transient ischemic dilation of the left ventricle on myocardial perfusion SPECT images. J Nucl Med. 2005;46:1596–601.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Tanabe Y, Takahashi M, Hosaka Y, Ito M, Ito E, Suzuki K. Prolonged recovery of cardiac output after maximal exercise in patients with chronic heart failure. J Am Coll Cardiol. 2000;35:1228–36.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Robertson WS, Feigenbaum H, Armstrong WF, Dillon JC, O'Donnell J, McHenry PW. Exercise echocardiography: a clinically practical addition in the evaluation of coronary artery disease. J Am Coll Cardiol. 1983;2:1085–91.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kloner RA, Allen J, Cox TA, Zheng Y, Ruiz CE. Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease. Am J Cardiol. 1991;68:329–34.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Rinaldi CA, Linka AZ, Masani ND, Avery PG, Jones E, Saunders H, et al. Randomized, double-blind crossover study to investigate the effects of amlodipine and isosorbide mononitrate on the time course and severity of exercise-induced myocardial stunning. Circulation. 1998;98:749–56.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Fragasso G, Benti R, Sciammarella M, Rossetti E, Savi A, Gerundini P, et al. Symptom-limited exercise testing causes sustained diastolic dysfunction in patients with coronary disease and low effort tolerance. J Am Coll Cardiol. 1991;17:1251–15.PubMedCrossRefGoogle Scholar
  39. 39.
    Schneider RM, Weintraub WS, Klein LW, Seelaus PA, Agarwal JB, Helfant RH. Rate of left ventricular functional recovery by radionuclide angiography after exercise in coronary artery disease. Am J Cardiol. 1986;57:927–32.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Vatterott PJ, Hanley PC, Mankin HT, Gibbons RJ. The divergent recovery of ST-segment depression and radionuclide angiographic indicators of myocardial ischemia. Am J Cardiol. 1990;66:296–301.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Tsoukas A, Ikonomidis I, Cokkinos P, Nihoyannopoulos P. Significance of persistent left ventricular dysfunction during recovery after dobutamine stress echocardiography. J Am Coll Cardiol. 1997;30:621–6.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Camici P, Araujo LI, Spinks T, Lammertsma AA, Kaski JC, Shea MJ, et al. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation. 1986;74:81–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation. 2001;104:3158–67.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Harjai K, Mobarek S, Abi-Samra F, Gilliland Y, Davison N, Drake K, et al. Mechanical dysfunction of the left atrium and the left atrial appendage following cardioversion of atrial fibrillation and its relation to total electrical energy used for cardioversion. Am J Cardiol. 1998;81:1125–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Fatkin D, Kuchar DL, Thorburn CW, Feneley MP. Transesophageal echocardiography before and during direct current cardioversion of atrial fibrillation: evidence for “atrial stunning” as a mechanism of thromboembolic complications. J Am Coll Cardiol. 1994;23:307–16.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Jordaens L, Missault L, Germonpré E, Callens B, Adang L, Vandenbogaerde J, et al. Delayed restoration of atrial function after conversion of atrial flutter by pacing or electrical cardioversion. Am J Cardiol. 1993;71:63–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Dabek J, Gasior Z, Monastyrska-Cup B, Jakubowski D. Cardioversion and atrial stunning. Pol Merkur Lekarski. 2007;22:224–8.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Antonielli E, Pizzuti A, Dogliani S, Stasi M, Bassignana A, Doronzo B. Absence of left atrial stunning after cardioversion of recent-onset atrial fibrillation in patients at low-stroke risk. Eur J Emerg Med. 2017;24:217–23.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Dagres N, Karatasakis G, Panou F, Athanassopoulos G, Maounis T, Tsougos E, et al. Pre-treatment with Irbesartan attenuates left atrial stunning after electrical cardioversion of atrial fibrillation. Eur Heart J. 2006;27:2062–8.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Fung KC, Tan HC, Kritharides L. Acute reductions in ventricular myocardial tissue velocities after direct current cardioversion of atrial fibrillation. J Am Soc Echocardiogr. 2003;16:656–63.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Selby NM, McIntyre CW. The acute cardiac effects of dialysis. Semin Dial. 2007;20:220–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zuidema MY, Dellsperger KC. Myocardial stunning with hemodialysis: clinical challenges of the cardiorenal patient. Cardiorenal Med. 2012;2:125–33.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    McIntyre CW, Burton JO, Selby NM, Leccisotti L, Korsheed S, Baker CS, et al. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin J Am Soc Nephrol. 2008;3:19–26.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Suzuki T, Suzuki Y, Okuda J, Kurazumi T, Suhara T, Ueda T, et al. Sepsis-induced cardiac dysfunction and β-adrenergic blockade therapy for sepsis. J Intensive Care. 2017;5:22.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, et al. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med. 1989;321:280–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Guaricci AI, Bulzis G, Pontone G, Scicchitano P, Carbonara R, Rabbat M, et al. Current interpretation of myocardial stunning. Trends Cardiovasc Med. 2018;28:263–71.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Lyon AR, Bossone E, Schneider B, Sechtem U, Citro R, Underwood SR, et al. Current state of knowledge on Takotsubo syndrome: a Position Statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2016;18:8–27.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Williams R, Arri S, Prasad A. Current Concepts in the Pathogenesis of Takotsubo Syndrome. Heart Fail Clin. 2016;12:473–84.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Boland TA, Lee VH, Bleck TP. Stress-induced cardiomyopathy. Crit Care Med. 2015;43:686–93.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O'Gara P, et al. High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation. 2012;126:697–706.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lyon AR, Rees PS, Prasad S, Poole-Wilson PA, Harding SE. Stress (Takotsubo) cardiomyopathy – a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Pract Cardiovasc Med. 2008;5:22–9.CrossRefGoogle Scholar
  62. 62.
    Murthy SB, Shah S, Venkatasubba Rao CP, Suarez JI, Bershad EM. Clinical characteristics of myocardial stunning in acute stroke. J Clin Neurosci. 2014;21:1279–82.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sugimoto K, Inamasu J, Hirose Y, Kato Y, Ito K, Iwase M, et al. The role of norepinephrine and estradiol in the pathogenesis of cardiac wall motion abnormality associated with subarachnoid hemorrhage. Stroke. 2012;43:1897–903.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Dawson DK. Acute stress-induced (takotsubo) cardiomyopathy. Heart. 2018;104:96–102.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–48.CrossRefGoogle Scholar
  66. 66.
    Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, et al. Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy. N Engl J Med. 2015;373:929–38.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Tornvall P, Collste O, Ehrenborg E, Järnbert-Petterson H. A case-control study of risk markers and mortality in takotsubo stress cardiomyopathy. J Am Coll Cardiol. 2016;67:1931–6.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Varghese RT, John AM, Paul TV. Catecholamine induced cardiomyopathy in pheochromocytoma. Indian J Endocrinol Metab. 2013;17:733–5.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tofield A. Connecting the pieces of Takotsubo ‘broken heart’. Eur Heart J. 2018;39:2021–2.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Pereira N, Parisi A, Dec GW, Choo J, Hajjar R, Gordon PC. Myocardial stunning in hyperthyroidism. Clin Cardiol. 2000;23:298–300.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Schwartz BG, Rezkalla S, Kloner RA. Cardiovascular effects of cocaine. Circulation. 2010;122:2558–69.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Cruz FE, Cheriex EC, Smeets JL, Atié J, Peres AK, Penn OC, et al. Reversibility of tachycardia-induced cardiomyopathy after cure of incessant supraventricular tachycardia. J Am Coll Cardiol. 1990;16:739–44.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Tanaka R, Spinale FG, Crawford FA, Zile MR. Effect of chronic supraventricular tachycardia on left ventricular function and structure in newborn pigs. J Am Coll Cardiol. 1992;20:1650–60.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Spinale FG, Holzgrefe HH, Mukherjee R, Arthur SR, Child MJ, Powell JR, et al. LV and myocyte structure and function after early recovery from tachycardia-induced cardiomyopathy. Am J Phys. 1995;268:H836–47.Google Scholar
  75. 75.
    Kim SJ, Depre C, Vatner SF. Novel mechanisms mediating stunned myocardium. Heart Fail Rev. 2003;8:143–53.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Pantos C, Mourouzis I, Cokkinos DV. Myocardial ischemia. Basic concepts. In: Myocardial Ischemia. p. 11–76.Google Scholar
  77. 77.
    Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation. 2001;104:2981–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest. 1988;82:476–85.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Li XY, McCay PB, Zughaib M, Jeroudi MO, Triana JF, Bolli R. Demonstration of free radical generation in the “stunned” myocardium in the conscious dog and identification of major differences between conscious and open-chest dogs. J Clin Invest. 1993;92:1025–41.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sekili S, McCay PB, Li XY, Zughaib M, Sun JZ, Tang L, et al. Direct evidence that the hydroxyl radical plays a pathogenetic role in myocardial “stunning” in the conscious dog and demonstration that stunning can be markedly attenuated without subsequent adverse effects. Circ Res. 1993;73:705–23.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Charlat MI, O'Neill PG, Egan JM, Abernethy DR, Michael LH, Myers ML, et al. Evidence for a pathogenetic role of xanthine oxidase in the “stunned” myocardium. Am J Phys. 1987;252:H566–77.Google Scholar
  82. 82.
    Xia Y, Zweier JL. Substrate control of free radical generation from xanthine oxidase in the postischemic heart. J Biol Chem. 1995;270:18797–803.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Tang X-L, Rizvi AN, Qiu Y, et al. Evidence that the hydroxyl radical triggers late preconditioning against myocardial stunning in conscious rabbits. Circulation. 1997;96(Suppl I):I–255.Google Scholar
  84. 84.
    Sun JZ, Tang XL, Park SW, Qiu Y, Turrens JF, Bolli R. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest. 1996;97:562–76.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Shlafer M, Kane PF, Kirsh MM. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg. 1982;83:830–9.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Ishida H, Genka C, Hirota Y, Hamasaki Y, Nakazawa H. Distinct roles of peroxynitrite and hydroxyl radical in triggering stunned myocardium-like impairment of cardiac myocytes in vitro. Mol Cell Biochem. 1999;198:31–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Renlund DG, Gerstenblith G, Lakatta EG, Jacobus WE, Kallman CH, Weisfeldt ML. Perfusate sodium during ischemia modifies post-ischemic functional and metabolic recovery in the rabbit heart. J Mol Cell Cardiol. 1984;16:795–801.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Corretti MC, Koretsune Y, Kusuoka H, Chacko VP, Zweier JL, Marban E. Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts. J Clin Invest. 1991;88:1014–25.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Van Eyk JE, Murphy AM. The role of troponin abnormalities as a cause for stunned myocardium. Coron Artery Dis. 2001;12:343–7.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Gao WD, Liu Y, Mellgren R, Marban E. Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. A consequence of Ca2+−dependent proteolysis? Circ Res. 1996;78:455–65.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Anselmi A, Abbate A, Girola F, Nasso G, Biondi-Zoccai GG, Possati G, et al. Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: a review of evidence. Eur J Cardiothorac Surg. 2004;25:304–11.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Pipikos T, Kapelouzou A, Tsilimigras DI, Fostinis Y, Pipikou M, Theodorakos A, et al. Stronger correlation with myocardial ischemia of highsensitivity troponin T than other biomarkers. J Nucl Cardiol. 2018.
  93. 93.
    Januzzi JL Jr, Filippatos G, Nieminen M, Gheorghiade M. Troponin elevation in patients with heart failure: on behalf of the third Universal Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur Heart J. 2012;33:2265–71.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Eisen A, Bonaca MP, Jarolim P, Scirica BM, White HD, Tendera M, et al. High-sensitivity troponin I in stable patients with atherosclerotic disease in the TRA 2°P – TIMI 50 trial. Clin Chem. 2017;63:307–15.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ahmed W, Schlett CL, Uthamalingam S, Truong QA, Koenig W, Rogers IS, et al. Single resting hsTnT level predicts abnormal myocardial stress test in acute chest pain patients with normal initial standard troponin. JACC Cardiovasc Imaging. 2013;6:72–82.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Seydelmann N, Liu D, Krämer J, Drechsler C, Hu K, Nordbeck P, et al. High-sensitivity troponin: a clinical blood biomarker for staging cardiomyopathy in fabry disease. J Am Heart Assoc. 2016;5(6). pii: e002839.Google Scholar
  97. 97.
    Depre C, Vatner SF. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev. 2007;12:307–17.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    García González MJ, Domínguez RA. Pharmacologic treatment of heart failure due to ventricular dysfunction by myocardial stunning: potential role of levosimendan. Am J Cardiovasc Drugs. 2006;6:69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    García-González MJ, Domínguez-Rodríguez A, Ferrer-Hita JJ. Utility of levosimendan, a new calcium sensitizing agent, in the treatment of cardiogenic shock due to myocardial stunning in patients with ST-elevation myocardial infarction: a series of cases. J Clin Pharmacol. 2005;45:704–8.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Sun JZ, Tang XL, Knowlton AA, Park SW, Qiu Y, Bolli R. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest. 1995;95:388–403.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gross GJ, Kersten JR, Warltier DC. Mechanisms of postischemic contractile dysfunction. Ann Thorac Surg. 1999;68:1898–904.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heart and Vessel DepartmentBiomedical Research Foundation, Academy of Athens - Gregory SkalkeasAthensGreece

Personalised recommendations