Advertisement

The Ishemia Reperfusion Injury Challenge

  • Dennis V. CokkinosEmail author
Chapter

Abstract

Ischemia reperfusion injury after early experimental description has entered the clinical setting with the advent of thrombolysis and primary angioplasty in the setting of acute myocardial infarction. It has four manifestations: Myocardial stunning, the no reflow phenomenon, arrhythmias, and cell death. It is caused by early overloading of cells- when reperfusion is established- with reactive oxygen species, rapid correction of acidosis, calcium overload and metabolic modulation. Apart from limiting the time of ischemia, main interventions to reverse its noxious effect are conditioning and use of various drugs, none of which has gained wide acceptance with beta- blockers and adenosine being still under consideration, while cyclosporine has disappointed. It is still a matter of intensive investigation.

Keywords

Ischemia reperfusion injury No reflow phenomenon Reperfusion arrhythmias Oxygen paradox Stunning 

References

  1. 1.
    Chazov EI, Matveeva LS, Mazaev AV, Sargin KE, Sadovskaia GV, Ruda MI. Intracoronary administration of fibrinolysin in acute myocardial infarct. Ter Arkh. 1976;48:8–192. ReatropPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rentrop P, Blanke H, Karsch KR, Kaiser H, Köstering H, Leitz K. Selective intracoronary thrombolysis in acute myocardial infarction and unstable angina pectoris. Circulation. 1981;63:307–17.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Goldberg S, Greenspon AJ, Urban PL, Muza B, Berger B, Walinsky P, et al. Reperfusion arrhythmia: a marker of restoration of antegrade flow during intracoronary thrombolysis for acute myocardial infarction. Am Heart J. 1983;105:26–32.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Tennant R, Wiggers CJ. The effect of coronary occlu- sion on myocardial contraction. Am J Phys. 1935;12:351–61.CrossRefGoogle Scholar
  5. 5.
    Grines CL, Browne KF, Marco J, Rothbaum D, Stone GW, O’Keefe J, et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med. 1993;328:673–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest. 1985;76:1713–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Grech ED, Jackson MJ, Ramsdale DR. Reperfusion injury after acute myocardial infarction. BMJ. 1995;310:477–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960;70:68–78.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66:1146–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ito H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat Clin Pract Cardiovasc Med. 2006;3:499–506.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Monassier JP. Reperfusion injury in acute myocardial infarction: from bench to cath lab. Part I: Clinical issues and therapeutic options. Arch Cardiovasc Dis. 2008;101:565–75.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123:92–100.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Vishwakarma VK, Upadhyay PK, Gupta PK, Yadav HN. Pathophysiologic role of ischemia reperfusion injury: a review. JICC. 2017;7(3):97–104. j.jicc.2017.06.017Google Scholar
  15. 15.
    Morishima I, Sone T, Okumura K, Tsuboi H, Kondo J, Mukawa H, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol. 2000;36:1202–9.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, et al. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation. 1992;85:1699–705.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Schofer J, Montz R, Mathey DG. Scintigraphic evidence of the "no reflow" phenomenon in human beings after coronary thrombolysis. J Am Coll Cardiol. 1985;5:593–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    van Kranenburg M, Magro M, Thiele H, de Waha S, Eitel I, Cochet A. Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging. 2014;7:930–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Bulluck H, Hausenloy DJ. Microvascular obstruction: the bane of myocardial reperfusion. Rev Esp Cardiol. 2015;68:28–34.CrossRefGoogle Scholar
  20. 20.
    Rezkalla SH, Stankowski RV, Hanna J, Kloner RA. Management of no-reflow phenomenon in the catheterization laboratory. JACC Cardiovasc Interv. 2017;10:215–23. Esp Cardiol (Engl Ed). 2015;68:919–20PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Mongeon FP, Bélisle P, Joseph L, Eisenberg MJ, Rinfret S. Adjunctive thrombectomy for acute myocardial infarction: a bayesian meta-analysis. Circ Cardiovasc Interv. 2010;3:6–16.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Mancini JG, Filion KB, Windle SB, Habib B, Eisenberg MJ. Meta-analysis of the long-term effect of routine aspiration thrombectomy in patients undergoing primary percutaneous coronary intervention. Am J Cardiol. 2016;118:23–31.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Garcia-Dorado D, Ruiz-Meana M, Piper HM. Lethal reperfusion injury in acute myocardial infarction: facts and unresolved issues. Cardiovasc Res. 2009;83:165–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hearse DJ, Humphrey SM, Bullock GR. The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol. 1978;10:641–68.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Downey JM. Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Annu Rev Physiol. 1990;52:487–504.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Piper HM, García-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998;38:291–300.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jennings RB, Reimer KA. The cell biology of acute myocardial ischemia. Annu Rev Med. 1991;42:225–46.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Piper HM, García-Dorado D. Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg. 1999;68:1913–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth. 2012;16:123–13230. Horowitz JD, Chirkov YY, Kennedy JA, Sverdlov AL. Modulation of myocardial metabolism: an emerging therapeutic principle. Curr Opin Cardiol. 2010;25:329–334.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Horowitz JD, Chirkov YY, Kennedy JA, Sverdlov AL. Modulation of myocardial metabolism: an emerging therapeutic principle. Curr Opin Cardiol. 2010;25:329–34.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lemasters JJ, Bond JM, Chacon E, Harper IS, Kaplan SH, Ohata H, et al. The pH paradox in ischemia-reperfusion injury to cardiac myocytes. EXS. 1996;76:99–114.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Qian T, Nieminen AL, Herman B, Lemasters JJ. Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Phys. 1997;273(6 Pt 1):C1783–92.CrossRefGoogle Scholar
  33. 33.
    Klein HH, Pich S, Lindert S, Nebendahl K, Warneke G, Kreuzer H. Treatment of reperfusion injury with intracoronary calcium channel antagonists and reduced coronary free calcium concentration in regionally ischemic, reperfused porcine hearts. J Am Coll Cardiol. 1989;13:1395–401.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88:581–609.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46:1650–67.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Neri M, Riezzo I, Pascale N, Pomara C, Turillazzi E. Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediat Inflamm. 2017;2017:7018393.CrossRefGoogle Scholar
  37. 37.
    Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med. 2008;45:18–31.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37, 837a–837d.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Phillips L, Toledo AH, Lopez-Neblina F, Anaya-Prado R, Toledo-Pereyra LH. Nitric oxide mechanism of protection in ischemia and reperfusion injury. J Investig Surg. 2009;22:46–55.CrossRefGoogle Scholar
  40. 40.
    Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res. 2004;61:402–13.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Zweier JL, Fertmann J, Wei G. Nitric oxide and peroxynitrite in postischemic myocardium. Antioxid Redox Signal. 2001;3:11–22.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991;288:481–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    van der Vliet A, O’Neill CA, Halliwell B, Cross CE, Kaur H. Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. Evidence for hydroxyl radical production from peroxynitrite. FEBS Lett. 1994;339:89–92.Google Scholar
  44. 44.
    Menon B, Singh M, Singh K. Matrix metalloproteinases mediate beta-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes. Am J Physiol Cell Physiol. 2005;289:C168–76.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zhou HZ, Ma X, Gray MO, Zhu BQ, Nguyen AP, Baker AJ, Simonis U, et al. Transgenic MMP-2 expression induces latent cardiac mitochondrial dysfunction. Biochem Biophys Res Commun. 2007;358:189–95.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW. Release of gelatinase A during platelet activation mediates aggregation. Nature. 1997;386:616–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Fernandez-Patron C, Radomski MW, Davidge ST. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ Res. 1999;85:906–11.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Fernandez-Patron C, Stewart KG, Zhang Y, Koivunen E, Radomski MW, Davidge ST. Vascular matrix metalloproteinase-2-dependent cleavage of calcitonin gene-related peptide promotes vasoconstriction. Circ Res. 2000;87:670–6.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 2000;101:1833–9.Google Scholar
  50. 50.
    Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res. 1997;80:393–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation. 2002;106:1543–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Pipikos T, Kapelouzou A, Tsilimigras DI, Fostinis Y, Pipikou M, Theodorakos A, et al. Stronger correlation with myocardial ischemia of high-sensitivity troponin T than other biomarkers. J Nucl Cardiol. 2018;  https://doi.org/10.1007/s12350-018-1199-6.
  53. 53.
    Lindsey M, Wedin K, Brown MD, Keller C, Evans AJ, Smolen J, et al. Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation. 2001;103:2181–7.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    McMillan WD, Tamarina NA, Cipollone M, Johnson DA, Parker MA, Pearce WH. Size matters: the relationship between MMP-9 expression and aortic diameter. Circulation. 1997;96:2228–32.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med. 1999;5:1135–42.CrossRefGoogle Scholar
  56. 56.
    Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation. 1999;99:3063–70.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106:55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Vanhoutte D, Heymans S. TIMPs and cardiac remodeling: ‘Embracing the MMP-independent-side of the family’. J Mol Cell Cardiol. 2010;48:445–53.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61:481–97.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229–317.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wang J, Frangogiannis NG Repair of the infarcted myocardium. Introduction to translational cardiovascular research. Cham: Springer 2015, p 279–97.Google Scholar
  62. 62.
    Dutta P, Nahrendorf M. Monocytes in myocardial infarction. Arterioscler Thromb Vasc Biol. 2015;35:1066–70.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Joshi NV, Toor I, Shah AS, Carruthers K, Vesey AT, Alam SR, et al. Systemic atherosclerotic inflammation following acute myocardial infarction: myocardial infarction begets myocardial infarction. J Am Heart Assoc. 2015;4:e001956.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Nahrendorf M, Swirski FK. Innate immune cells in ischaemic heart disease: does myocardial infarction beget myocardial infarction? Eur Heart J. 2016;37:868–72.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Shishido T, Nozaki N, Yamaguchi S, Shibata Y, Nitobe J, Miyamoto T, et al. Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation. 2003;108:2905–10.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Timmers L, Sluijter JP, van Keulen JK, Hoefer IE, Nederhoff MG, Goumans MJ, et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res. 2008;102:257–64.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Lu C, Ren D, Wang X, Ha T, Liu L, Lee EJ, et al. Toll-like receptor 3 plays a role in myocardial infarction and ischemia/reperfusion injury. Biochim Biophys Acta. 1842;2014:22–31.Google Scholar
  68. 68.
    Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96:881–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Frangogiannis NG, Mendoza LH, Ren G, Akrivakis S, Jackson PL, Michael LH, et al. MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol. 2003;285:H483–92.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hofmann U, Frantz S. Role of T-cells in myocardial infarction. Eur Heart J. 2016;37:873–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Somasundaram P, Ren G, Nagar H, Kraemer D, Mendoza L, Michael LH, et al. Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. J Pathol. 2005;205:102–11.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003;145:962–70.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation. 2001;104:2649–52.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Ozaki M, Kawashima S, Hirase T, Yamashita T, Namiki M, Inoue N, et al. Overexpression of endothelial nitric oxide synthase in endothelial cells is protective against ischemia-reperfusion injury in mouse skeletal muscle. Am J Pathol. 2002;160:1335–44.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Loscalzo J. Endothelial injury, vasoconstriction, and its prevention. Tex Heart Inst J. 1995;22:180–4.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Nieswandt B, Pleines I, Bender M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost. 2011;9(Suppl 1):92–104.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Monassier JP. Reperfusion injury in acute myocardial infarction: from bench to cath lab. Part II: Clinical issues and therapeutic options. Arch Cardiovasc Dis. 2008;101:565–75.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Fröhlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ. Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J. 2014;34:1714–22.CrossRefGoogle Scholar
  79. 79.
    Hausenloy DJ, Erik Bøtker H, Condorelli G, Ferdinandy P, Garcia-Dorado D, Heusch G, et al. Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2013;98:7–27.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hausenloy DJ, Garcia-Dorado D, Bøtker HE, Davidson SM, Downey J, Engel FB, et al. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res. 2017;113:564–85.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mahaffey KW, Puma JA, Barbagelata NA, DiCarli MF, Leesar MA, Browne KF, et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial. J Am Coll Cardiol. 1999;34:1711–20.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW, AMISTAD-II Investigators. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol. 2005;45:1775–80.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Quintana M, Hjemdahl P, Sollevi A, Kahan T, Edner M, Rehnqvist N, et al. Left ventricular function and cardiovascular events following adjuvant therapy with adenosine in acute myocardial infarction treated with thrombolysis, results of the ATTenuation by Adenosine of Cardiac Complications (ATTACC) study. Eur J Clin Pharmacol. 2003;59:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Bulluck H, Sirker A, Loke YK, Garcia-Dorado D, Hausenloy DJ. Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: an updated meta-analysis of randomized controlled trials. Int J Cardiol. 2016;202:228–37.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wu H, Ye M, Yang J, Ding J, Yang J, Dong W, et al. Nicorandil protects the heart from ischemia/reperfusion injury by attenuating endoplasmic reticulum response-induced apoptosis through PI3K/Akt signaling pathway. Cell Physiol Biochem. 2015;35:2320–32.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Campo G, Pavasini R, Morciano G, Lincoff MA, C Gibson M, Kitakaze M, et al. Data on administration of cyclosporine, nicorandil, metoprolol on reperfusion related outcomes in ST-segment Elevation Myocardial Infarction treated with percutaneous coronary intervention. Data Brief. 2017;14:197–205.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mewton N, Croisille P, Gahide G, Rioufol G, Bonnefoy E, Sanchez I, et al. Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol. 2010;55:1200–5.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, et al. Cyclosporine before PCI in Patients with Acute Myocardial infarction. N Engl J Med. 2015;373:1021–31.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ottani F, Latini R, Staszewsky L, La Vecchia L, Locuratolo N, Sicuro M, et al. Cyclosporine A in reperfused myocardial infarction: the multicenter, controlled, open-label CYCLE trial. J Am Coll Cardiol. 2016;67:365–74.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Heusch G. Critical issues for the translation of cardioprotection. Circ Res. 2017;120:1477–86.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ibanez B, Macaya C, Sánchez-Brunete V, Pizarro G, Fernández-Friera L, Mateos A, et al. Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction (METOCARD-CNIC) trial. Circulation. 2013;128:1495–503.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Roolvink V, Ibáñez B, Ottervanger JP, Pizarro G, van Royen N, Mateos A, et al. Early intravenous beta-blockers in patients with ST-segment elevation myocardial infarction before primary percutaneous coronary intervention. J Am Coll Cardiol 2016;67:2705–2715.Google Scholar
  93. 93.
    Hausenloy DJ, Yellon DM. Combination therapy to target reperfusion injury after ST-segment-elevation myocardial infarction: a more effective approach to cardioprotection. Circulation. 2017;136:904–6.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Pasupathy S, Tavella R, Grover S, Raman B, NEK P, Du YT, et al. Early use of N-acetylcysteine with nitrate therapy in patients undergoing primary percutaneous coronary intervention for ST-segment-elevation myocardial infarction reduces myocardial infarct size (the NACIAM trial [N-acetylcysteine in acute myocardial infarction]). Circulation. 2017;136:894–903.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 2001;94:1133–8.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Weisman HF, Bartow T, Leppo MK, Marsh HC Jr, Carson GR, Concino MF, et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science. 1990;249:146–51.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Vakeva AP, Agah A, Rollins SA, Matis LA, Li L, Stahl GL. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation. 1998;97:2259–67.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Boodram S, Evans E. Use of leukocyte-depleting filters during cardiac surgery with cardiopulmonary bypass: a review. J Extra Corpor Technol. 2008;40:27–42.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Chiang N, Gronert K, Clish CB, O’Brien JA, Freeman MW, Serhan CN. Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion. J Clin Invest. 1999;104:309–16.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hausenloy DJ, Barrabes JA, Bøtker HE, Davidson SM, Di Lisa F, Downey J, et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol. 2016;111:70.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cabrera-Fuentes HA, Alba-Alba C, Aragones J, Bernhagen J, Boisvert WA, Bøtker HE, et al. Meeting report from the 2nd International Symposium on New Frontiers in Cardiovascular Research. Protecting the cardiovascular system from ischemia: between bench and bedside. Basic Res Cardiol. 2016;111:7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Bøtker HE, et al. From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research". Basic Res Cardiol. 2016;111:69.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Mentzer RM Jr. Myocardial protection in heart surgery. J Cardiovasc Pharmacol Ther. 2011;16:290–7.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Dianati Maleki N, Van de Werf F, Goldstein P, Adgey JA, Lambert Y, Sulimov V, et al. Aborted myocardial infarction in ST-elevation myocardial infarction: insights from the STrategic Reperfusion Early After Myocardial infarction trial. Heart. 2014;100:1543–9.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Musiolik J, van Caster P, Skyschally A, Boengler K, Gres P, Schulz R, Heusch G. Reduction of infarct size by gentle reperfusion without activation of reperfusion injury salvage kinases in pigs. Cardiovasc Res. 2010;85:110–7.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Beyersdorf F. The use of controlled reperfusion strategies in cardiac surgery to minimize ischaemia/reperfusion damage. Cardiovasc Res. 2009;83:262–8.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Pyda M, Grajek S, Oleśkowska-Florek F, Lesiak M, Siniawski S, Gwizdała A, et al. Aborted myocardial infarction in patients undergoing primary percutaneous coronary intervention. J Med Science. 2015;84:27–32.Google Scholar
  108. 108.
    Sluijter JP, Condorelli G, Davidson SM, Engel FB, Ferdinandy P, Hausenloy DJ, et al. Novel therapeutic strategies for cardioprotection. Pharmacol Ther. 2014;144:60–70.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bostjancic E, Zidar N, Stajer D, Glavac D. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology. 2010;115:163–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324:1710–3.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013;495:107–10.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Armstrong PW, Gershlick AH, Goldstein P, Wilcox R, Danays T, Lambert Y, et al. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction. N Engl J Med. 2013;368:1379–87.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heart and Vessel DepartmentBiomedical Research Foundation, Academy of Athens - Gregory SkalkeasAthensGreece

Personalised recommendations