Advertisement

Cardiac Hypertrophy

  • Dennis V. CokkinosEmail author
Chapter

Abstract

Cardiac hypertrophy (HYP) is an increase of cardiac mass. In the clinical aspect, the left ventricle is the one more commonly affected and studied. HYP can be physiological and adaptive, commonly seen in pregnancy and exercise; myocardial mass increase is moderate, cardiac contractility is normal or supernormal, and HYP regresses after child birth or detraining. A return to the fetal phenotype or increase of fibrosis does not occur. Pathological or maladaptive HYP is more commonly seen in hypertension, valvular heart disease, and myocardial heart disease; HYP can be marked, myocardial dysfunction occurs, and there is a return to the fetal phenotype, cell death, and fibrosis. Various pathological genes appear that mediate this type of HYP, which to a large extent does not regress after removal of the noxious stimulus. The increase in mass affects not only cardiomyocytes but cardiac fibroblasts, extracellular matrix, and endothelium and vascular smooth muscle cells. The possible therapeutic approaches are discussed.

Keywords

Cardiac hypertrophy Cardiac mass Physiological adaptive hypertrophy Pathological maladaptive hypertrophy Exercise Pregnancy Cardiac dysfunction Fibrosis Cell death 

References

  1. 1.
    Zak R. Development and proliferative capacity of cardiac muscle cells. Circ Res. 1974;35(suppl II):17–26.Google Scholar
  2. 2.
    Dorn GW 2nd, Robbins J, Sugden PH. Phenotyping hypertrophy: eschew obfuscation. Circ Res. 2003;92:1171–5.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003;65:45–79.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Meerson FZ. On the mechanism of compensatory hyperfunction and insufficiency of the heart. Cor Vasa. 1961;3:161–77.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Dorn GW 2nd. The fuzzy logic of physiological cardiac hypertrophy. Hypertension. 2007;49:962–70.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Andersen JB, Rourke BC, Caiozzo VJ, Bennett AF, Hicks JW. Physiology: postprandial cardiac hypertrophy in pythons. Nature. 2005;434:37–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Secor SM, Hicks JW, Bennett AF. Ventilatory and cardiovascular responses of a python (Python molurus) to exercise and digestion. J Exp Biol. 2000;203:2447–54.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Baliga RR, Rosen SD, Camici PG, Kooner JS. Regional myocardial blood flow redistribution as a cause of postprandial angina pectoris. Circulation. 1998;97:1144–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Berlinerblau R, Shani J. Postprandial angina pectoris: clinical and angiographic correlations. J Am Coll Cardiol. 1994;23:627–79.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Schannwell CM, Zimmermann T, Schneppenheim M, Plehn G, Marx R, Strauer BE. Left ventricular hypertrophy and diastolic dysfunction in healthy pregnant women. Cardiology. 2002;97:73–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Eghbali M, Deva R, Alioua A, Minosyan TY, Ruan H, Wang Y, et al. Molecular and functional signature of heart hypertrophy during pregnancy. Circ Res. 2005;96:1208–16.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lechmanová M, Kittnar O, Mlcek M, Slavícek J, Dohnalová A, Havránek S, et al. QT dispersion and T-loop morphology in late pregnancy and after delivery. Physiol Res. 2002;51:121–9.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Takeishi Y, Huang Q, Abe J, Glassman M, Che W, Lee JD, et al. Src and multiple MAP kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J Mol Cell Cardiol. 2001;33:1637–48.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wisløff U, Loennechen JP, Currie S, Smith GL, Ellingsen Ø. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res. 2002;54:162–74.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Chicco AJ, McCune SA, Emter CA, Sparagna GC, Rees ML, Bolden DA, et al. Low-intensity exercise training delays heart failure and improves survival in female hypertensive heart failure rats. Hypertension. 2008;51:1096–102.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Giannuzzi P, Temporelli PL, Corrà U, Tavazzi L, ELVD-CHF Study Group. Antiremodeling effect of long-term exercise training in patients with stable chronic heart failure: results of the Exercise in Left Ventricular Dysfunction and Chronic Heart Failure (ELVD-CHF) Trial. Circulation. 2003;108:554–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Adamopoulos S, Gouziouta A, Mantzouratou P, Laoutaris ID, Dritsas A, Cokkinos DV, et al. Thyroid hormone signalling is altered in response to physical training in patients with end-stage heart failure and mechanical assist devices: potential physiological consequences? Interact Cardiovasc Thorac Surg. 2013;17:664–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Thompson PD. D. Bruce Dill Historical lecture. Historical concepts of the athlete’s heart. Med Sci Sports Exerc. 2004;36:363–70.Google Scholar
  20. 20.
    Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med. 1991;324:295–301.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Pelliccia A, Maron BJ, De Luca R, Di Paolo FM, Spataro A, Culasso F. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation. 2002;105:944–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Toutouzas K, Trikas A, Pitsavos C, Barbetseas J, Androulakis A, Stefanadis C, et al. Echocardiographic features of left atrium in elite male athletes. Am J Cardiol. 1996;78:1314–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Iemitsu M, Miyauchi T, Maeda S, Yuki K, Kobayashi T, Kumagai Y, et al. Intense exercise causes decrease in expression of both endothelial NO synthase and tissue NOx level in hearts. Am J Physiol Regul Integr Comp Physiol. 2000;279:R951–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Benito B, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi Y, Tardif JC, Brugada J, et al. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation. 2011;123:13–22.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Emter CA, McCune SA, Sparagna GC, Radin MJ, Moore RL. Low-intensity exercise training delays onset of decompensated heart failure in spontaneously hypertensive heart failure rats. Am J Physiol Heart Circ Physiol. 2005;289:H2030–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Schultz RL, Swallow JG, Waters RP, Kuzman JA, Redetzke RA, Said S, et al. Effects of excessive long-term exercise on cardiac function and myocyte remodeling in hypertensive heart failure rats. Hypertension. 2007;50:410–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Aronow BJ, Toyokawa T, Canning A, Haghighi K, Delling U, Kranias E, et al. Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy. Physiol Genomics. 2001;6:19–28.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Aronow BJ, Toyokawa T, Canning A, Haghighi K, Delling U, Kranias E, et al. Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy. Physiol Genomics. 2001;6:19–28.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, et al. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A. 1997;94:8121–6.Google Scholar
  30. 30.
    Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–28.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Dorn GW 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 2005;115:527–37.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kong SW, Bodyak N, Yue P, Liu Z, Brown J, Izumo S, et al. Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiol Genomics. 2005;21:34–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Strøm CC, Aplin M, Ploug T, Christoffersen TE, Langfort J, Viese M, et al. Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy. FEBS J. 2005;272:2684–95.PubMedCrossRefGoogle Scholar
  34. 34.
    Choi DJ, Koch WJ, Hunter JJ, Rockman HA. Mechanism of beta-adrenergic receptor desensitization in cardiac hypertrophy is increased beta-adrenergic receptor kinase. J Biol Chem. 1997;272:17223–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kinugawa K, Yonekura K, Ribeiro RC, Eto Y, Aoyagi T, Baxter JD, et al. Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res. 2001;89:591–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Scheuer J, Malhotra A, Hirsch C, Capasso J, Schaible TF. Physiologic cardiac hypertrophy corrects contractile protein abnormalities associated with pathologic hypertrophy in rats. J Clin Invest. 1982;70:1300–5.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, Kapoun AM, et al. Altered patterns of gene expression in response to myocardial infarction. Circ Res. 2000;86:939–45.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tan FL, Moravec CS, Li J, Apperson-Hansen C, McCarthy PM, Young JB, et al. The gene expression fingerprint of human heart failure. Proc Natl Acad Sci U S A. 2002;99:11387–92.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol Rev. 1984;64:1–64.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Gaussin V, Tomlinson JE, Depre C, Engelhardt S, Antos CL, Takagi G, et al. Common genomic response in different mouse models of beta-adrenergic-induced cardiomyopathy. Circulation. 2003;108:2926–33.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Murakami K, Mizushige K, Noma T, Tsuji T, Kimura S, Kohno M. Perindopril effect on uncoupling protein and energy metabolism in failing rat hearts. Hypertension. 2002;40:251–5.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Rizzo M, Gensini F, Fatini C, Manetti P, Pucci N, Capalbo A, et al. ACE I/D polymorphism and cardiac adaptations in adolescent athletes. Med Sci Sports Exerc. 2003;35:1986–90.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Duerr RL, Huang S, Miraliakbar HR, Clark R, Chien KR, Ross J Jr. Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. J Clin Invest. 1995;95:619–27.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol. 2001;229:141–62.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, et al. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol. 2008;214:316–21.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem. 2002;277:22896–901.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    O’Neill BT, Abel ED. Akt1 in the cardiovascular system: friend or foe? J Clin Invest. 2005;115:2059–64.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dorn GW 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 2005;115:527–37.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    TA ACLMK, Frey N, Kutschke W, McAnally J, Shelton JM, et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2002;99:907–12.CrossRefGoogle Scholar
  51. 51.
    Michael A, Haq S, Chen X, Hsich E, Cui L, Walters B, et al. Glycogen synthase kinase-3beta regulates growth, calcium homeostasis, and diastolic function in the heart. J Biol Chem. 2004;279:21383–93.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Dillmann W. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev. 2010;15:125–3.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Cokkinos D, Pantos C. Les hormones thyroïdiennes. Activation sur le myocardie. Bull Acad Med. 2009;193:327–38.Google Scholar
  54. 54.
    Mourouzis I, Mantzouratou P, Galanopoulos G, Kostakou E, Roukounakis N, Kokkinos AD, et al. Dose-dependent effects of thyroid hormone on post-ischemic cardiac performance: potential involvement of Akt and ERK signalings. Mol Cell Biochem. 2012;363:235–43.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100:1512–21.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kontaridis MI, Geladari EV, Geladari CV. Pathways to myocardial hypertrophy. In: Cokkinos DV, editor. Introduction to translational cardiovascular research. London: Springer; 2015. p. 167–86.Google Scholar
  57. 57.
    Crabtree GR, Olson EN. NFAT signaling: choreographing the social lives of cells. Cell. 2002;109(Suppl):S67–579.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 2004;94:110–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hill JA, Karimi M, Kutschke W, Davisson RL, Zimmerman K, Wang Z, et al. Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation. 2000;101:2863–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Oie E, Bjørnerheim R, Clausen OP, Attramadal H. Cyclosporin A inhibits cardiac hypertrophy and enhances cardiac dysfunction during postinfarction failure in rats. Am J Physiol Heart Circ Physiol. 2000;278:H2115–23.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, et al. Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res. 1999;84:735–40.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature. 2002;415:206–12.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A, Raynolds MV, Sastravaha A, et al. Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol. 2000;32:817–30.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Dorn GW 2nd, Tepe NM, Lorenz JN, Koch WJ, Liggett SB. Low- and high-level transgenic expression of beta2-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc Natl Acad Sci U S A. 1999;96:6400–5.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, et al. Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol. 2012;59:1979–87.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982;307:205–11.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Rockman HA, Chien KR, Choi DJ, Iaccarino G, Hunter JJ, Ross J Jr, et al. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci U S A. 1998;95:7000–5.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lowes BD, Gilbert EM, Abraham WT, Minobe WA, Larrabee P, Ferguson D, et al. Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med. 2002;346:1357–65.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Yoshida H, Kakuchi J, Yoshikawa N, Saruta T, Inagami T, Phillips JA 3rd, et al. Angiotensin II type 1 receptor gene abnormality in a patient with Bartter’s syndrome. Kidney Int. 1994;46:1505–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75:977–84.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Feuerstein GZ, Rozanski D. G proteins and heart failure: is Galphaq a novel target for heart failure? Circ Res. 2000;87:1085–6.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Mishra S, Ling H, Grimm M, Zhang T, Bers DM, Brown JH. Cardiac hypertrophy and heart failure development through Gq and CaM kinase II signaling. J Cardiovasc Pharmacol. 2010;56:598–603.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chrysant SG. Current status of dual Renin Angiotensin aldosterone system blockade for the treatment of cardiovascular diseases. Am J Cardiol. 2010;105:849–52.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Maruyama Y, Nishida M, Sugimoto Y, Tanabe S, Turner JH, Kozasa T, et al. Galpha (12/13) mediates alpha(1)-adrenergic receptor-induced cardiac hypertrophy. Circ Res. 2002;91:961–9. endothelin 1 (75)PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Arai K, Maruyama Y, Nishida M, Tanabe S, Takagahara S, Kozasa T, et al. Differential requirement of G alpha12, G alpha13, G alphaq, and G beta gamma for endothelin-1-induced c-Jun NH2-terminal kinase and extracellular signal-regulated kinase activation. Mol Pharmacol. 2003;63:478–88.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Hoshijima M, Sah VP, Wang Y, Chien KR, Brown JH. The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. Involvement of Rho kinase. J Biol Chem. 1998;273:7725–230.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest. 2013;123:37–45.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 2000;19:6341–50.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128:191–227.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Komuro I, Kudo S, Yamazaki T, Zou Y, Shiojima I, Yazaki Y. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J. 1996;10:631–6.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Choukroun G, Hajjar R, Kyriakis JM, Bonventre JV, Rosenzweig A, Force T. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J Clin Invest. 1998;102:1311–20.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ramirez MT, Zhao XL, Schulman H, Brown JH. The nuclear deltaB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem. 1997;272:31203–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Yano M, Kim S, Izumi Y, Yamanaka S, Iwao H. Differential activation of cardiac c-jun amino-terminal kinase and extracellular signal-regulated kinase in angiotensin II-mediated hypertension. Circ Res. 1998;83:752–60.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 1998;273:2161–8.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol. 2004;37:449–71.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Kerfant BG, Zhao D, Lorenzen-Schmidt I, Wilson LS, Cai S, Chen SR, et al. PI3Kgamma is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ Res. 2007;101:400–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Dorn GW 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 2005;115:527–37.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chen L, Hahn H, Wu G, Chen CH, Liron T, Schechtman D, et al. Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci U S A. 2001;98:11114–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Samuelsson AM, Bollano E, Mobini R, Larsson BM, Omerovic E, Fu M, et al. Hyperinsulinemia: effect on cardiac mass/function, angiotensin II receptor expression, and insulin signaling pathways. Am J Physiol Heart Circ Physiol. 2006;291:H787–96.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Shimizu I, Minamino T, Toko H, Okada S, Ikeda H, Yasuda N, et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J Clin Invest. 2010;120:1506–14.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Shamak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, et al. Cardiac hypertrophy: an introduction to molecular and cellular basis. Med Sci Monit Basic Res. 2016;22:75–9.CrossRefGoogle Scholar
  93. 93.
    Yang F, Dong A, Mueller P, Caicedo J, Sutton AM, Odetunde J, et al. Coronary artery remodeling in a model of left ventricular pressure overload is influenced by platelets and inflammatory cells. PLoS One. 2012;7:e40196.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kuusisto J, Kärjä V, Sipola P, Kholová I, Peuhkurinen K, Jääskeläinen P, et al. Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart. 2012;98:1007–13.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Wollert KC, Chien KR. Cardiotrophin-1 and the role of gp130-dependent signaling pathways in cardiac growth and development. J Mol Med (Berl). 1997;75:492–501.CrossRefGoogle Scholar
  96. 96.
    Takeda N, Manabe I. Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. Int J Inflam. 2011;2011:535241.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    van den Akker F, de Jager SC, Sluijter JP. Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of toll-like receptors. Mediat Inflamm. 2013;2013:181020.Google Scholar
  99. 99.
    Xu L, Brink M. mTOR, cardiomyocytes and inflammation in cardiac hypertrophy. Biochim Biophys Acta. 1863;2016:1894–903.Google Scholar
  100. 100.
    Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res. 2015;116:1254–68.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation. 2003;107:1664–70.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation. 2004;109:3050–5.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Gao XM, Wong G, Wang B, Kiriazis H, Moore XL, Su YD, et al. Inhibition of mTOR reduces chronic pressure-overload cardiac hypertrophy and fibrosis. J Hypertens. 2006;24:1663–70.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell. 1996;87:13–20.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Ha T, Li Y, Hua F, Ma J, Gao X, Kelley J, et al. Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res. 2005;68:224–34.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Higashikuni Y, Tanaka K, Kato M, Nureki O, Hirata Y, Nagai R, et al. Toll-like receptor-2 mediates adaptive cardiac hypertrophy in response to pressure overload through interleukin-1β upregulation via nuclear factor κB activation. J Am Heart Assoc. 2013;2:e000267.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ehrentraut H, Felix Ehrentraut S, Boehm O, El Aissati S, Foltz F, Goelz L, et al. Tlr4 deficiency protects against cardiac pressure overload induced hyperinflammation. PLoS One. 2015;10:e0142921.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol. 2000;2:346–51.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Liu Y, Jiang XL, Liu Y, Jiang DS, Zhang Y, Zhang R, et al. Toll-interacting protein (Tollip) negatively regulates pressure overload-induced ventricular hypertrophy in mice. Cardiovasc Res. 2014;101:87–96.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Abrahao M, Carneiro-Ramos M. Cross-talk between Toll-like receptors and renin angiotensin system in a cardiac hypertrophy model induced by renal ischemia/reperfusion. FASEB J. 2014;Abstr. Nr.4045Google Scholar
  112. 112.
    Ehrentraut H, Weber C, Ehrentraut S, Schwederski M, Boehm O, Knuefermann P, et al. The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. Eur J Heart Fail. 2011;13:602–10.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, et al. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation. 2000;102:1944–9.CrossRefGoogle Scholar
  114. 114.
    Chancey AL, Brower GL, Peterson JT, Janicki JS. Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation. 2002;105:1983–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med. 2002;8:35–40.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Liu ZP, Olson EN. Suppression of proliferation and cardiomyocyte hypertrophy by CHAMP, a cardiac-specific RNA helicase. Proc Natl Acad Sci U S A. 2002;99:2043–8.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Takewaki S, Kuro-o M, Hiroi Y, Yamazaki T, Noguchi T, Miyagishi A, et al. Activation of Na(+)-H+ antiporter (NHE-1) gene expression during growth, hypertrophy and proliferation of the rabbit cardiovascular system. J Mol Cell Cardiol. 1995;27:729–42.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Cingolani HE. Camilión de Hurtado MC.Na(+)-H(+) exchanger inhibition: a new antihypertrophic tool. Circ Res. 2002;90:751–3.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Amin JK, Xiao L, Pimental DR, Pagano PJ, Singh K, Sawyer DB, et al. Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol. 2001;33:131–9.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kuster GM, Pimentel DR, Adachi T, Ido Y, Brenner DA, Cohen RA, et al. Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation. 2005;111:1192–8.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, et al. Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2002;34:233–40.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS. H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol. 2003;35:615–21.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart. 2007;93:903–7.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Li JM, Gall NP, Grieve DJ, Chen M, Shah AM. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension. 2002;40:477–84.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    MacCarthy PA, Grieve DJ, Li JM, Dunster C, Kelly FJ, Shah AM. Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase. Circulation. 2001;104:2967–74.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Park YM, Park MY, Suh YL, Park JB. NAD(P)H oxidase inhibitor prevents blood pressure elevation and cardiovascular hypertrophy in aldosterone-infused rats. Biochem Biophys Res Commun. 2004;313:812–7.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000;10:238–45.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. Clin Invest. 2000;106:847–56.CrossRefGoogle Scholar
  129. 129.
    Balakumar P, Singh M. The possible role of caspase-3 in pathological and physiological cardiac hypertrophy in rats. Basic Clin Pharmacol Toxicol. 2006;99:418–24.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Rothermel BA, Hill JA. Autophagy in load-induced heart disease. Circ Res. 2008:103–1363.Google Scholar
  131. 131.
    Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13:619–24.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Zaglia T, Milan G, Ruhs A, Franzoso M, Bertaggia E, Pianca N, et al. Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy. J Clin Invest. 2014;124:2410–24.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Li L, Xu J, He L, Peng L, Zhong Q, Chen L, et al. The role of autophagy in cardiac hypertrophy. Acta Biochim Biophys Sin Shanghai. 2016;48:491–500.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Qipshidze N, Tyagi N, Metreveli N, Lominadze D, Tyagi SC. Autophagy mechanism of right ventricular remodeling in murine model of pulmonary artery constriction. Am J Physiol Heart Circ Physiol. 2012;302:H688–96.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Rifki OF, Hill JA. Cardiac autophagy: good with the bad. J Cardiovasc Pharmacol. 2012;60:248–52.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005;115:2108–18.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–5.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114:565–71.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Anversa P, Levicky V, Beghi C, McDonald SL, Kikkawa Y. Morphometry of exercise-induced right ventricular hypertrophy in the rat. Circ Res. 1983;52:57–64.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Jaba IM, Zhuang ZW, Li N, Jiang Y, Martin KA, Sinusas AJ, et al. NO triggers RGS4 degradation to coordinate angiogenesis and cardiomyocyte growth. J Clin Invest. 2013;123:1718–31.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell. 2006;10:159–70.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS, Walsh K. Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension. 2006;47:887–93.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Friehs I, Barillas R, Vasilyev NV, Roy N, McGowan FX, del Nido PJ. Vascular endothelial growth factor prevents apoptosis and preserves contractile function in hypertrophied infant heart. Circulation. 2006;114:I290–5.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Oka T, Maillet M, Watt AJ, Schwartz RJ, Aronow BJ, Duncan SA, et al. Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res. 2006;98:837–45.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Heineke J, Auger-Messier M, Xu J, Oka T, Sargent MA, York A, et al. Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest. 2007;117:3198–210.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446:444–8.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Naito AT, Okada S, Minamino T, Iwanaga K, Liu ML, Sumida T, Nomura S, et al. Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. Circ Res. 2010 Jun 11;106:1692–702.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 1998;392:405–8.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Carr AM. Cell cycle. Piecing together the p53 puzzle. Science. 2000;287:1765–6.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15:2–8.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Shizukuda Y, Matoba S, Mian OY, Nguyen T, Hwang PM. Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem. 2005;273:25–32.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Gerdes AM. Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail. 2002;8:S264–8.PubMedCrossRefGoogle Scholar
  154. 154.
    Dorn GW 2nd, Robbins J, Ball N, Walsh RA. Myosin heavy chain regulation and myocyte contractile depression after LV hypertrophy in aortic-banded mice. Am J Phys. 1994;267:H400–5.Google Scholar
  155. 155.
    You J, Wu J, Zhang Q, Ye Y, Wang S, Huang J, et al. Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. Am J Physiol Heart Circ Physiol. 2018;314:H552–62.PubMedGoogle Scholar
  156. 156.
    Derumeaux G, Mulder P, Richard V, Chagraoui A, Nafeh C, Bauer F, et al. Tissue Doppler imaging differentiates physiological from pathological pressure-overload left ventricular hypertrophy in rats. Circulation. 2002;105:1602–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Galanti G, Toncelli L, Del Furia F, Stefani L, Cappelli B, De Luca A, et al. Tissue doppler imaging can be useful to distinguish pathological from physiological left ventricular hypertrophy: a study in master athletes and mild hypertensive subjects. Cardiovasc Ultrasound. 2009;7:48.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Afonso L, Kondur A, Simegn M, Niraj A, Hari P, Kaur R, et al. Two-dimensional strain profiles in patients with physiological and pathological hypertrophy and preserved left ventricular systolic function: a comparative analyses. BMJ Open. 2012;2:e001390.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Oláh A, Németh BT, Mátyás C, Hidi L, Lux Á, Ruppert M, et al. Physiological and pathological left ventricular hypertrophy of comparable degree is associated with characteristic differences of in vivo hemodynamics. Am J Physiol Heart Circ Physiol. 2016;310:H587–97.PubMedCrossRefGoogle Scholar
  160. 160.
    Schiattarella GG, Hill JA. Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation. 2015;131:1435–47.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Douglas PS, Katz SE, Weinberg EO, Chen MH, Bishop SP, Lorell BH. Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. J Am Coll Cardiol. 1998;32:1118–25.PubMedCrossRefGoogle Scholar
  162. 162.
    Weinberg EO, Thienelt CD, Katz SE, Bartunek J, Tajima M, Rohrbach S, et al. Gender differences in molecular remodeling in pressure overload hypertrophy. J Am Coll Cardiol. 1999;34:264–73.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Bech-Hanssen O, Wallentin I, Houltz E, Beckman Suurküla M, Larsson S, Caidahl K. Gender differences in patients with severe aortic stenosis: impact on preoperative left ventricular geometry and function, as well as early postoperative morbidity and mortality. Eur J Cardiothorac Surg. 1999;15:24–30.PubMedCrossRefGoogle Scholar
  164. 164.
    Lee JM, Park SJ, Lee SP, Park E, Chang SA, Kim HK, et al. Gender difference in ventricular response to aortic stenosis: insight from cardiovascular magnetic resonance. PLoS One. 2015;10:e0121684.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Treibel TA, Kozor R, Fontana M, Torlasco C, Reant P, Badiani S, et al. Sex dimorphism in the myocardial response to aortic stenosis. JACC Cardiovasc Imaging. 2017;pii:S1936-878X(17)30907-5.  https://doi.org/10.1016/j.jcmg.2017.08.025.CrossRefGoogle Scholar
  166. 166.
    Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109:1580–9.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Cioffi G, Faggiano P, Vizzardi E, Tarantini L, Cramariuc D, Gerdts E, et al. Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis. Heart. 2011;97:301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Verdecchia P, Angeli F, Gattobigio R, Sardone M, Pede S, Reboldi GP. Regression of left ventricular hypertrophy and prevention of stroke in hypertensive subjects. Am J Hypertens. 2006;19:493–9.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    McKinsey TA, Kass DA. Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface. Nat Rev Drug Discov. 2007;6:617–35.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Reid BG, Stratton MS, Bowers S, Cavasin MA, Demos-Davies KM, Susano I, et al. Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging. J Mol Cell Cardiol. 2016;97:106–13.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Hilfiker-Kleiner D, Haghikia A, Berliner D, Vogel-Claussen J, Schwab J, Franke A, et al. Bromocriptine for the treatment of peripartum cardiomyopathy: a multicentre randomized study. Eur Heart J. 2017;38:2671–9.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Vivar R, Humeres C, Varela M, Ayala P, Guzmán N, Olmedo I, et al. Cardiac fibroblast death by ischemia/reperfusion is partially inhibited by IGF-1 through both PI3K/Akt and MEK-ERK pathways. Exp Mol Pathol. 2012;93:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51:600–6.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83:59–115.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Crowley ST, Ray CJ, Nawaz D, Majack RA, Horwitz LD. Multiple growth factors are released from mechanically injured vascular smooth muscle cells. Am J Phys. 1995;269:H1641–17.Google Scholar
  176. 176.
    Wang J, Yang X. The function of miRNA in cardiac hypertrophy. Cell Mol Life Sci. 2012;69:3561–70.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Sun Q, Zhang Y, Yang G, Chen X, Zhang Y, Cao G, et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res. 2008;36:2690–9.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Res. 2012;22:516–27.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103:18255–60.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A. 2009;106:12103–8.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Dong DL, Chen C, Huo R, Wang N, Li Z, Tu YJ, et al. Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy. Hypertension. 2010;55:946–52.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Da Costa Martins PA, De Windt LJ. MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res. 2012;93:563–72.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Sadiq S, Crowley TM, Charchar FJ, Sanigorski A, Lewandowski PA. MicroRNAs in a hypertrophic heart: from foetal life to adulthood. Biol Rev Camb Philos Soc. 2017;92:1314–31.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Xu J, Liu Y, Xie Y, Zhao C, Wang H. Bioinformatics analysis reveals MicroRNAs regulating biological pathways in exercise-induced cardiac physiological hypertrophy. Biomed Res Int. 2017;2017:2850659.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heart and Vessel DepartmentBiomedical Research Foundation, Academy of Athens - Gregory SkalkeasAthensGreece

Personalised recommendations