Advertisement

Endogenous Regeneration of the Mammalian Heart

  • Konstantinos Malliaras
Chapter

Abstract

The adult mammalian heart, once viewed as a postmitotic organ, is now considered a regenerative organ. The human heart’s regenerative capacity peaks during childhood and decreases exponentially with age. While this innate regenerative capacity is limited, the study of the cellular sources of innate regeneration and the molecular pathways that govern it is certainly merited; elucidation of the endogenous regenerative mechanisms of the mammalian heart could enable their therapeutic exploitation. With regard to the cellular sources of myocyte turnover, cardiomyocyte proliferation has emerged as the dominant mechanism of myocyte replenishment in the injured neonatal heart and in the healthy adult heart during normal aging. Following myocardial injury of the adult heart, myocyte proliferation increases. Endogenous progenitors may also contribute to cardiomyogenesis in the injured mammalian heart, although this is not universally accepted and remains a subject of intense debate. Regarding therapeutic ways to stimulate cardiac regeneration, several strategies have yielded promising results in animal testing, including genetic manipulation of the cell cycle, regulation of miRNA expression, modulation of the Hippo and neuregulin/ERBB signaling pathways, administration of mitogenic factors, exposure to hypoxia, exercise, cell therapy, and mechanical unloading with left ventricular assist devices. Clinical translation of such therapeutic strategies is of utmost importance, as safe and reliable exogenous stimulation of endogenous regenerative processes will undoubtedly enable development of more effective treatments for a wide spectrum of cardiac diseases.

Keywords

Cardiac regeneration Myocyte turnover Cardiomyocyte proliferation Cardiac stem cells Cyclin Neuregulin Periostin Hippo pathway 

References

  1. 1.
    Castillo JG, Silvay G. Characterization and management of cardiac tumors. Semin Cardiothorac Vasc Anesth. 2010;14(1):6–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326–35.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Malliaras K, Terrovitis J. Cardiomyocyte proliferation vs progenitor cells in myocardial regeneration: the debate continues. Glob Cardiol Sci Pract. 2013;2013(3):303–15.CrossRefGoogle Scholar
  4. 4.
    Malliaras K, Vakrou S, Kapelios CJ, Nanas JN. Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification. Expert Opin Biol Ther. 2016;16(11):1341–52.Google Scholar
  5. 5.
    Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bergmann O, Zdunek S, Felker A, et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161(7):1566–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Mollova M, Bersell K, Walsh S, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA. 2013;110(4):1446–51.CrossRefGoogle Scholar
  8. 8.
    Senyo SE, Steinhauser ML, Pizzimenti CL, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493(7432):433–6.Google Scholar
  9. 9.
    Alkass K, Panula J, Westman M, et al. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell. 2015;163(4):1026–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Soonpaa MH, Zebrowski DC, Platt C, et al. Cardiomyocyte cell-cycle activity during preadolescence. Cell. 2015;163(4):781–2.PubMedCrossRefGoogle Scholar
  11. 11.
    Soonpaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol. 1997;272(1 Pt 2):H220–6.CrossRefGoogle Scholar
  12. 12.
    Malliaras K, Zhang Y, Seinfeld J, et al. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med. 2013;5(2):191–209.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–1080.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Andersen DC, Ganesalingam S, Jensen CH, Sheikh SP. Do neonatal mouse hearts regenerate following heart apex resection?. Stem Cell Rep. 2014;2:406–13.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Porrello ER, Mahmoud AI, Simpson E, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA. 2013;110(1):187–192.Google Scholar
  16. 16.
    Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, Metzler B, Aitman T, Penninger JM. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany NY). 2012;4:966–977.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Jesty SA, Steffey MA, Lee FK, et al. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci USA. 2012;109(33):13380–5.CrossRefGoogle Scholar
  18. 18.
    Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool. 1974;187(2):249–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):2188–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Fratz S, Hager A, Schreiber C, Schwaiger M, Hess J, Stern HC. Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. Ann Thorac Surg. 2011;92:1761–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res. 2016;118(2):216–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;334(23):1750–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Kajstura J, Leri A, Finato N, et al. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA. 1998;95(15):8801–5.CrossRefGoogle Scholar
  24. 24.
    Kimura W, Xiao F, Canseco DC, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523(7559):226–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Puente BN, Kimura W, Muralidhar SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–79.  https://doi.org/10.1016/j.cell.2014.03.032.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Eschenhagen T, Bolli R, Braun T, Field LJ, et al. Cardiomyocyte regeneration: a consensus statement. Circulation. 2017;136(7):680–86.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hsieh PC, Segers VF, Davis ME, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13(8):970–74.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ellison GM, Vicinanza C, Smith AJ, et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154(4):827–42.Google Scholar
  29. 29.
    Loffredo FS, Steinhauser ML, Gannon J, Lee RT. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell. 2011;8(4):389–98.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Malliaras K, Ibrahim A, Tseliou E, et al. Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction. EMBO Mol Med. 2014;6(6):760–77.Google Scholar
  31. 31.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are pluripotent and support myocardial regeneration. Cell. 2003;114:763–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A. 2003;100:12313–8.Google Scholar
  33. 33.
    Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265:262–75.PubMedCrossRefGoogle Scholar
  34. 34.
    Ott HC, Matthiesen TS, Brechtken J, Grindle S, Goh SK, Nelson W, et al. The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med. 2007;4(Suppl 1):S27–39.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454:109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896–908.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    van Berlo JH, Kanisicak O, Maillet M, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337–41.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liu Q, Yang R, Huang X, et al. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res. 2016;26(1):119–30.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sultana N, Zhang L, Yan J, et al. Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun. 2015;6:8701.Google Scholar
  41. 41.
    Molkentin JD, Houser SR. Are resident c-Kit+ cardiac stem cells really all that are needed to mend a broken heart? Circ Res. 2013;113(9):1037–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Nadal-Ginard B, Ellison GM, Torella D. Absence of evidence is not evidence of absence: pitfalls of cre knock-ins in the c-Kit locus. Circ Res. 2014;115(4):415–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Vicinanza C, Aquila I, Cianflone E, et al. Kitcre knock-in mice fail to fate-map cardiac stem cells. Nature. 2018;555(7697):E1–E5.PubMedCrossRefGoogle Scholar
  44. 44.
    van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SJ, Middleton RC, Marbán E, Molkentin JD. van Berlo et al. reply. Nature. 2018;555(7697):E18.PubMedCrossRefGoogle Scholar
  45. 45.
    Uchida S, De Gaspari P, Kostin S, et al. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Rep. 2013;1(5):397–410.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Valiente-Alandi I, Albo-Castellanos C, Herrero D, et al. Cardiac Bmi1(+) cells contribute to myocardial renewal in the murine adult heart. Stem Cell Res Ther. 2015;6:205.Google Scholar
  47. 47.
    Tamura Y, Matsumura K, Sano M, et al. Neural crest-derived stem cells migrate and differentiate into cardiomyocytes after myocardial infarction. Arterioscler Thromb Vasc Biol. 2011;31(3):582–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Smits AM, Dronkers E, Goumans MJ. The epicardium as a source of multipotent adult cardiac progenitor cells: their origin, role and fate. Pharmacol Res. 2018;127:129–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Zangi L, Lui KO, von Gise A, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol. 2013;31(10):898–907.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Smart N, Bollini S, Dubé KN, et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474(7353):640–4.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ali SR, Hippenmeyer S, Saadat LV, et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci U S A. 2014;111(24):8850–5.CrossRefGoogle Scholar
  52. 52.
    Hsueh YC, Wu JM, Yu CK, et al. Prostaglandin E2 promotes post-infarction cardiomyocyte replenishment by endogenous stem cells. EMBO Mol Med. 2014;6(4):496–503.Google Scholar
  53. 53.
    Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science. 2007;318:772–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Rojas-Muñoz A, Rajadhyksha S, Gilmour D, van Bebber F, Antos C, Rodríguez Esteban C, Nüsslein-Volhard C, Izpisúa Belmonte JC. ErbB2 and ErbB3 regulate amputation-induced proliferation and migration during vertebrate regeneration. Dev Biol. 2009;327:177–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, Tessarollo L, Frenette PS. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med. 2013;19, 695–703.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Mahmoud AI, O’Meara CC, Gemberling M, Zhao L, Bryant DM, Zheng R, Gannon JB, Cai L, Choi W-Y, Egnaczyk GF, et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev Cell. 2015;34:387–99.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    White IA, Gordon J, Balkan W, Hare JM. Sympathetic reinnervation is required for mammalian cardiac regeneration. Circ Res. 2015;117:990–4.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA. 2013;110:9415–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Grow M, Neff AW, Mescher AL, King MW. Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration. Dev Dyn. 2006;235:2667–85.PubMedCrossRefGoogle Scholar
  60. 60.
    Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124:1382–92.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Han C, Nie Y, Lian H, Liu R, He F, Huang H, Hu S. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res. 2015;25(10):1137–51.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pasumarthi KB, Nakajima H, Nakajima HO, et al. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96(1):110–8,PubMedCrossRefGoogle Scholar
  63. 63.
    Woo YJ, Panlilio CM, Cheng RK, et al. Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation. 2006;114(1 Suppl):I206–13.CrossRefGoogle Scholar
  64. 64.
    Shapiro SD, Ranjan AK, Kawase Y, et al. Cyclin A2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci Transl Med. 2014;6(224):224ra27.PubMedCrossRefGoogle Scholar
  65. 65.
    Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D. Regulation of Cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell. 2018;173(1):104–116.e12.PubMedCrossRefGoogle Scholar
  66. 66.
    Sdek P, Zhao P, Wang Y, et al. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J Cell Biol. 2011;194(3):407–23.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mahmoud AI, Kocabas F, Muralidhar SA, et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013;497(7448):249–53.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zhou Q, Li L, Zhao B, Guan K-L. The hippo pathway in heart development, regeneration, and diseases. Circ Res. 2015;116:1431–47.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Miesfeld JB, Link BA. Establishment of transgenic lines to monitor and manipulate Yap/Taz-Tead activity in zebrafish reveals both evolutionarily conserved and divergent functions of the Hippo pathway. Mech Dev. 2014;133:177–88.PubMedCrossRefGoogle Scholar
  70. 70.
    Heallen T. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332:458–61.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF. Hippo signaling impedes adult heart regeneration. Development. 2013;140:4683–90.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Xin M, Kim Y, Sutherland LB, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A. 2013;110(34):13839–44.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lin Z, von Gise A, Zhou P, et al. Cardiac specific YAP activation improves cardiac function and survival inan experimental murine MI model. Circ Res. 2014;115(3):354–63.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Tao G, Kahr PC, Morikawa Y, Zhang M, Rahmani M, Heallen TR, Li L, Sun Z, Olson EN, Amendt BA, Martin JF. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature. 2016;534:119–123.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Eulalio A, Mano M, Dal Ferro M, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen J, Huang ZP, Seok HY, et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 2013;112(12):1557–66.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tian Y, Liu Y, Wang T, et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7(279):279ra38.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Aguirre A, In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell. 2014;15:589–604.  https://doi.org/10.1016/j.stem.2014.10.003.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kuhn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Polizzotti BD, Arab S, Kühn B. Intrapericardial delivery of gelfoam enables the targeted delivery of Periostin peptide after myocardial infarction by inducing fibrin clot formation. PLoS One. 2012;7(5):e36788.Google Scholar
  81. 81.
    Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–70.PubMedCrossRefGoogle Scholar
  82. 82.
    Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci U S A. 2006;103(42):15546–51.CrossRefGoogle Scholar
  83. 83.
    Wei K, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525:479–85.  https://doi.org/10.1038/nature15372.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    D'Uva G, Aharonov A, Lauriola M, et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol. 2015;17(5):627–38.PubMedCrossRefGoogle Scholar
  85. 85.
    Lorts A, Schwanekamp JA, Elrod JW, et al. Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ Res. 2009;104(1):e1–7.Google Scholar
  86. 86.
    Reuter S, Soonpaa MH, Firulli AB, et al. Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice. PLoS ONE 2014;9(12):e115871.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nakada Y, Canseco DC, Thet S, et al. Hypoxia induces heart regeneration in adult mice. Nature. 2017;541(7636):222–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Schmeckpeper J, Verma A, Yin L, et al. Inhibition of Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J Mol Cell Cardiol. 2015;85:215–25.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Vujic A, Lerchenmüller C, Wu TD, Guillermier C, Rabolli CP, Gonzalez E, Senyo SE, Liu X, Guerquin-Kern JL, Steinhauser ML, Lee RT, Rosenzweig A. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat Commun. 2018;9(1):1659.Google Scholar
  90. 90.
    Liu X, Xiao J, Zhu H, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015;21(4):584–95.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Baggish AL, et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol. 2011;589:3983–94.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Malliaras K, Li TS, Luthringer D, et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation. 2012;125:100–12.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Malliaras K, Smith RR, Kanazawa H, et al. Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circulation. 2013;128:2764–75.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Weil BR, Suzuki G, Leiker MM, Fallavollita JA, Canty JM. Comparative Efficacy of Intracoronary Allogeneic Mesenchymal Stem Cells and Cardiosphere-Derived Cells in Swine with Hibernating Myocardium. Circ Res. 2015;117:634–44.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Tang XL, Li Q, Rokosh G, et al. Long-Term Outcome of Administration of c-kitPOS Cardiac Progenitor Cells After Acute Myocardial Infarction: Transplanted Cells Do not Become Cardiomyocytes, but Structural and Functional Improvement and Proliferation of Endogenous Cells Persist for at Least One Year. Circ Res. 2016;118(7):1091–105.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Malliaras KG, Terrovitis JV, Drakos SG, Nanas JN. Reverse cardiac remodeling enabled by mechanical unloading of the left ventricle. J Cardiovasc Transl Res. 2009;2(1):114–25.PubMedCrossRefGoogle Scholar
  97. 97.
    Canseco DC, Kimura W, Garg S, et al. Human ventricular unloading induces cardiomyocyte proliferation. J Am Coll Cardiol. 2015;65(9):892–900.Google Scholar
  98. 98.
    Wohlschlaeger, B. Levkau, G. Brockhoff, et al. Hemodynamic support by left ventricular assist devices reduces cardiomyocyte DNA content in the failing human heart. Circulation. 2010;121(8) :989–96.PubMedCrossRefGoogle Scholar
  99. 99.
    Koudstaal S, Jansen Of Lorkeers SJ, Gaetani R, Gho JM, van Slochteren FJ, Sluijter JP, Doevendans PA, Ellison GM, Chamuleau SA. Concise review: heart regeneration and the role of cardiac stem cells. Stem Cells Transl Med. 2013;2(6):434–43.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Konstantinos Malliaras
    • 1
  1. 1.Department of CardiologyLaikon HospitalAthensGreece

Personalised recommendations