Advertisement

Cardiac Remodeling: The Course Toward Heart Failure – I. General Concepts

  • Dennis V. CokkinosEmail author
Chapter

Abstract

Cardiac remodeling (REM) is a generally unfavorable process that leads to left ventricular dilation in response to noxious stimuli, mostly acute myocardial infarction. Thus it occurs in around 30% of anterior infarcts despite timely primary angioplasty and the use of the commonly used drugs. Infarct expansion, specifically at the border area is characteristic. Other causes are cardiomyopathy (dilated or hypertrophic), hypertension, valvular heart disease, antineoplastic chemotherapy, diabetes mellitus, morbid obesity, genetic diseases, arrhythmias and conduction defects. Cell death through apoptosis, chronic hypoxia, ROS production, inflammation, and defective collagen organization are the main contributing factors. The most widely used definition of REM is a >20% increase in left ventricular end-diastolic volume (LVEDV). There is also evidence that regression of REM can occur, i.e., reverse REM. The latter is defined as a ≥10% decrease in left ventricular end-systolic volume (LVESV) and confers a more favorable outcome.

Keywords

Acute myocardial infarction Myocardial remodeling Left ventricular function Myocyte biology Border zone, Infarct expansion 

References

  1. 1.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79:215–62.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;27(101):2981–8.CrossRefGoogle Scholar
  3. 3.
    Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35:569–82.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–72.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation. 1986;74:693–702.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Galiuto L, Garramone B, Scarà A, Rebuzzi AG, Crea F, La Torre G, et al. The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. J Am Coll Cardiol. 2008;51:552–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Savoye C, Equine O, Tricot O, Nugue O, Segrestin B, Sautière K, et al. Left ventricular remodeling after anterior wall acute myocardial infarction in modern clinical practice (from the REmodelage VEntriculaire [REVE] study group). Am J Cardiol. 2006;98:1144–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, et al. Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation. 2002;106:2351–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lee TH, Hamilton MA, Stevenson LW, Moriguchi JD, Fonarow GC, Child JS, et al. Impact of left ventricular cavity size on survival in advanced heart failure. Am J Cardiol. 1993;72:672–6.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Solomon SD, Skali H, Anavekar NS, Bourgoun M, Barvik S, Ghali JK, et al. Changes in ventricular size and function in patients treated with valsartan, captopril, or both after myocardial infarction. Circulation. 2005;111:3411–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Tardif JC, O'Meara E, Komajda M, Böhm M, Borer JS, Ford I, et al. Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur Heart J. 2011;32:2507–15.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Migrino RQ, Young JB, Ellis SG, White HD, Lundergan CF, Miller DP, et al. End-systolic volume index at 90 to 180 minutes into reperfusion therapy for acute myocardial infarction is a strong predictor of early and late mortality. The Global Utilization of Streptokinase and t-PA for Occluded Coronary Arteries (GUSTO)-I Angiographic Investigators. Circulation. 1997;96:116–21.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Mann DL, Bogaev R, Buckberg GD. Cardiac remodelling and myocardial recovery: lost in translation? Eur J Heart Fail. 2010;12:789–96.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76:44–51.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Cokkinos DV, Belogianneas C. Left ventricular remodelling: a problem in search of solutions. Eur Cardiol Rev. 2016;11:29–35.CrossRefGoogle Scholar
  18. 18.
    Bhatt AS, Ambrosy AP, Velazquez EJ. Adverse remodeling and reverse remodeling after myocardial infarction. Curr Cardiol Rep. 2017;19:71.  https://doi.org/10.1007/s11886-017-0876-4.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yu CM, Bleeker GB, Fung JW, Schalij MJ, Zhang Q, van der Wall EE, et al. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation. 2005;112:1580–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Funaro S, La Torre G, Madonna M, Galiuto L, Scarà A, Labbadia A, et al. Incidence, determinants, and prognostic value of reverse left ventricular remodelling after primary percutaneous coronary intervention: results of the Acute Myocardial Infarction Contrast Imaging (AMICI) multicenter study. Eur Heart J. 2009;30:566–75.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hessel MH, Bleeker GB, Bax JJ, Henneman MM, den Adel B, Klok M, et al. Reverse ventricular remodelling after cardiac resynchronization therapy is associated with a reduction in serum tenascin-C and plasma matrix metalloproteinase-9 levels. Eur J Heart Fail. 2007;9:1058–63.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol. 2010;56:392–406.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128:388–400.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32:670–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Borlaug BA. Defining HFpEF: where do we draw the line? Eur Heart J. 2016;37:463–5.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Tribouilloy C, Grigioni F, Avierinos JF, Barbieri A, Rusinaru D, Szymanski C, et al. Survival implication of left ventricular end-systolic diameter in mitral regurgitation due to flail leaflets a long-term follow-up multicenter study. J Am Coll Cardiol. 2009;54:1961–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Vahanian A. ESC guidelines Desk Reference ESC Committee for Practice Guidelines. p. 181–94. 2010.Google Scholar
  29. 29.
    Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S, et al. Differential cardiac remodeling in preload versus afterload. Circulation. 2010;122:993–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chemaly ER, Kang S, Zhang S, McCollum L, Chen J, Bénard L, et al. Differential patterns of replacement and reactive fibrosis in pressure and volume overload are related to the propensity for ischaemia and involve resistin. J Physiol. 2013;591:5337–55.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Koyama T, Nishina T, Ono N, Sakakibara Y, Nemoto S, Ikeda T, et al. Early and mid-term results of left ventricular volume reduction surgery for dilated cardiomyopathy. J Card Surg. 2005;20:S39–42.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104:557–67.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hamada T, Kubo T, Kitaoka H, Hirota T, Hoshikawa E, Hayato K, et al. Clinical features of the dilated phase of hypertrophic cardiomyopathy in comparison with those of dilated cardiomyopathy. Clin Cardiol. 2010;33:E24-8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Segura AM, Radovancevic R, Demirozu ZT, Frazier OH, Buja LM. Anthracycline treatment and ventricular remodeling in left ventricular assist device patients. Tex Heart Inst J. 2015;42:124–30.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zhao Y, McLaughlin D, Robinson E, Harvey AP, Hookham MB, Shah AM, et al. Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Res. 2010;70:9287–97.  https://doi.org/10.1158/0008-5472.CAN-10-2664.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Harmancey R, Wilson CR, Taegtmeyer H. Adaptation and maladaptation of the heart in obesity. Hypertension. 2008;52:181–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fenelon G, Wijns W, Andries E, Brugada P. Tachycardiomyopathy: mechanisms and clinical implications. Pacing Clin Electrophysiol. 1996;19:95–106.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Martin CA, Lambiase PD. Pathophysiology, diagnosis and treatment of tachycardiomyopathy. Heart. 2017;103:1543–52.  https://doi.org/10.1136/heartjnl-2016-310391.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ban JE, Park HC, Park JS, Nagamoto Y, Choi JI, Lim HE, et al. Electrocardiographic and electrophysiological characteristics of premature ventricular complexes associated with left ventricular dysfunction in patients without structural heart disease. Europace. 2013;15:735–41.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Braunschweig F. When cardiac function dangles on a thread of conduction: dyssynchronopathy in patients with left bundle branch block. J Am Coll Cardiol. 2013;61:1096–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Gold MR, Daubert C, Abraham WT, Ghio S, St John Sutton M, Hudnall JH, et al. The effect of reverse remodeling on long-term survival in mildly symptomatic patients with heart failure receiving cardiac resynchronization therapy: results of the REVERSE study. Heart Rhythm. 2015;12:524–30.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Maron BJ. Distinguishing hypertrophic cardiomyopathy from athlete's heart physiological remodelling: clinical significance, diagnostic strategies and implications for preparticipation screening. Br J Sports Med. 2009;43:649–56.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Fraccarollo D, Galuppo P, Bauersachs J. Novel therapeutic approaches to post-infarction remodelling. Cardiovasc Res. 2012;94:293–303.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Papadopoulos CE, Karvounis HI, Giannakoulas G, Karamitsos TD, Efthimiadis GK, Parharidis GE. Predictors of left ventricular remodeling after reperfused acute myocardial infarction. Am J Cardiol. 2007;99:1024–5.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Masci PG, Ganame J, Francone M, Desmet W, Lorenzoni V, Iacucci I, et al. Relationship between location and size of myocardial infarction and their reciprocal influences on post-infarction left ventricular remodelling. Eur Heart J. 2011;32:1640–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Giannuzzi P, Temporelli PL, Bosimini E, Gentile F, Lucci D, Maggioni AP, et al. Heterogeneity of left ventricular remodeling after acute myocardial infarction: results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-3 Echo Substudy. Am Heart J. 2001;141:131–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    University of Minnesota. Atlas of human cardiac anatomy.Google Scholar
  48. 48.
    Miura T, Miki T. Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol. 2008;103:501–13.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Minicucci MF, Azevedo PS, Martinez PF, Lima AR, Bonomo C, Guizoni DM, et al. Critical infarct size to induce ventricular remodeling, cardiac dysfunction and heart failure in rats. Int J Cardiol. 2011;151:242–3.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Jelani A, Jugdutt BI. STEMI and heart failure in the elderly: role of adverse remodeling. Heart Fail Rev. 2010;15:513–21.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ennezat PV, Lamblin N, Mouquet F, Tricot O, Quandalle P, Aumégeat V, et al. The effect of ageing on cardiac remodelling and hospitalization for heart failure after an inaugural anterior myocardial infarction. Eur Heart J. 2008;29:1992–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bauters C, Lamblin N, Ennezat PV, Mycinski C, Tricot O, Nugue O, et al. A prospective evaluation of left ventricular remodeling after inaugural anterior myocardial infarction as a function of gene polymorphisms in the renin-angiotensin-aldosterone, adrenergic, and metalloproteinase systems. Am Heart J. 2007;153:641–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Timmers L, van Keulen JK, Hoefer IE, Meijs MF, van Middelaar B, den Ouden K, et al. Targeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circ Res. 2009;104:699–706.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Palmer BR, Devereaux CL, Dhamrait SS, Mocatta TJ, Pilbrow AP, Frampton CM, et al. The common G-866A polymorphism of the UCP2 gene and survival in diabetic patients following myocardial infarction. Cardiovasc Diabetol. 2009;8:31.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Walker AM, Patel PA, Rajwani A, Groves D, Denby C, Kearney L, et al. Diabetes mellitus is associated with adverse structural and functional cardiac remodelling in chronic heart failure with reduced ejection fraction. Diab Vasc Dis Res. 2016;13:331–40.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Cokkinos DV, Pantos C. Type 1 diabetes impairs compensatory response after myocardial infarction; role of tissue hypothyroidism and effects of thyroid hormone administration. Bull Acad Natl Med. 2011;195:151–64. discussion 164-5PubMedPubMedCentralGoogle Scholar
  57. 57.
    Maczewski M, Maczewska J, Duda M. Hypercholesterolaemia exacerbates ventricular remodelling after myocardial infarction in the rat: role of angiotensin II type 1 receptors. Br J Pharmacol. 2008;154:1640–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kudo H, Kai H, Kajimoto H, Koga M, Takayama N, Mori T, et al. Exaggerated blood pressure variability superimposed on hypertension aggravates cardiac remodeling in rats via angiotensin II system-mediated chronic inflammation. Hypertension. 2009;54:832–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Gu L, Pandey V, Geenen DL, Chowdhury SA, Piano MR. Cigarette smoke-induced left ventricular remodelling is associated with activation of mitogen-activated protein kinases. Eur J Heart Fail. 2008;10:1057–64.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Talukder MA, Johnson WM, Varadharaj S, Lian J, Kearns PN, El-Mahdy MA, et al. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol. 2011;300:H388–96.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Iismaa SE, Li M, Kesteven S, Wu J, Chan AY, Holman SR, et al. Cardiac hypertrophy limits infarct expansion after myocardial infarction in mice. Sci Rep. 2018;8:6114.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15:802–12.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Swynghedauw B. Darwinian evolution and cardiovascular remodeling. Heart Fail Rev. 2016;21:795–802.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hochman JS, Bulkley BH. Expansion of acute myocardial infarction: an experimental study. Circulation. 1982;65:1446–50.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Richardson WJ, Holmes JW. Why Is Infarct Expansion Such an Elusive Therapeutic Target? J Cardiovasc Transl Res. 2015;8:421–30.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zornoff LA, Paiva SA, Duarte DR, Spadaro J. Ventricular remodeling after myocardial infarction: concepts and clinical implications. Arq Bras Cardiol. 2009;92:150–64.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Clarke CL, Grunwald GK, Allen LA, Barón AE, Peterson PN, Brand DW, et al. Natural history of left ventricular ejection fraction in patients with heart failure. Circ Cardiovasc Qual Outcomes. 2013;6:680–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Pantos C, Mourouzis I, Xinaris C, Kokkinos AD, Markakis K, Dimopoulos A, et al. Time-dependent changes in the expression of thyroid hormone receptor alpha 1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling. Eur J Endocrinol. 2007;156:415–24.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, et al. Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res. 2010;42:718–24.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C. Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol. 2011;165:107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Abbate A, Biondi-Zoccai GG, Bussani R, Dobrina A, Camilot D, Feroce F, et al. Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure. J Am Coll Cardiol. 2003;41:753–60.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Abbate A, Biondi-Zoccai GG, Baldi A. Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. J Cell Physiol. 2002;193:145–53.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Elsässer A, Vogt AM, Nef H, Kostin S, Möllmann H, Skwara W, et al. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol. 2004;43:2191–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol. 2001;280:H2726–31.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol. 1991;68:7D–16D.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation. 1996;94:1506–12.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Yang L, Gao JY, Ma J, Xu X, Wang Q, Xiong L, et al. Cardiac-specific overexpression of metallothionein attenuates myocardial remodeling and contractile dysfunction in l-NAME-induced experimental hypertension: Role of autophagy regulation. Toxicol Lett. 2015;237:121–32.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Michael LH, Ballantyne CM, Zachariah JP, Gould KE, Pocius JS, Taffet GE, et al. Myocardial infarction and remodeling in mice: effect of reperfusion. Am J Phys. 1999;277:H660–8.Google Scholar
  79. 79.
    Touchstone DA, Beller GA, Nygaard TW, Tedesco C, Kaul S. Effects of successful intravenous reperfusion therapy on regional myocardial function and geometry in humans: a tomographic assessment using two-dimensional echocardiography. J Am Coll Cardiol. 1989;13:1506–13.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Simes RJ, Topol EJ, Holmes DR Jr, White HD, Rutsch WR, Vahanian A, et al. Link between the angiographic substudy and mortality outcomes in a large randomized trial of myocardial reperfusion. Importance of early and complete infarct artery reperfusion. GUSTO-I Investigators. Circulation. 1995;91:1923–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ross AM, Coyne KS, Moreyra E, Reiner JS, Greenhouse SW, Walker PL, et al. Extended mortality benefit of early postinfarction reperfusion. GUSTO-I Angiographic Investigators. Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries Trial. Circulation. 1998;97:1549–56.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Mehta RH, Harjai KJ, Cox D, Stone GW, Brodie B, Boura J, et al. Clinical and angiographic correlates and outcomes of suboptimal coronary flow inpatients with acute myocardial infarction undergoing primary percutaneous coronary intervention. J Am Coll Cardiol. 2003;42:1739–46.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Goel PK, Bhatia T, Kapoor A, Gambhir S, Pradhan PK, Barai S, et al. Left ventricular remodeling after late revascularization correlates with baseline viability. Tex Heart Inst J. 2014;41:381–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Haghighi K, Sanoudou D, Kranias E. In: Cokkinos DV, editor. Calcium Cycling Circuits in Cardiac Physiology and Pathophysiology in Introduction to Translational Cardiovascular Research. Cham: Springer; 2015. p. p205–15.Google Scholar
  85. 85.
    Currie S, Smith GL. Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res. 1999;41:135–46.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Zarain-Herzberg A, Afzal N, Elimban V, Dhalla NS. Decreased expression of cardiac sarcoplasmic reticulum Ca(2+)-pump ATPase in congestive heart failure due to myocardial infarction. Mol Cell Biochem. 1996;163-164:285–90.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Hasenfuss G, Meyer M, Schillinger W, Preuss M, Pieske B, Just H. Calcium handling proteins in the failing human heart. Basic Res Cardiol. 1997;92(Suppl 1):87–93.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Sari FR, Watanabe K, Widyantoro B, Thandavarayan RA, Harima M, Kodama M, et al. Sex differences play a role in cardiac endoplasmic reticulum stress (ERS) and ERS-initiated apoptosis induced by pressure overload and thapsigargin. Cardiovasc Pathol. 2011;20:281–90.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Mourouzis I, Giagourta I, Galanopoulos G, Mantzouratou P, Kostakou E, Kokkinos AD, et al. Thyroid hormone improves the mechanical performance of the post-infarcted diabetic myocardium: a response associated with up-regulation of Akt/mTOR and AMPK activation. Metabolism. 2013;62:1387–93.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Adamopoulos S, Gouziouta A, Mantzouratou P, Laoutaris ID, Dritsas A, Cokkinos DV, et al. Thyroid hormone signalling is altered in response to physical training in patients with end-stage heart failure and mechanical assist devices: potential physiological consequences? Interact Cardiovasc Thorac Surg. 2013;17:664–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, et al. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol. 2008;214:316–21.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Kim SJ, Abdellatif M, Koul S, Crystal GJ. Chronic treatment with insulin-like growth factor I enhances myocyte contraction by upregulation of Akt-SERCA2a signaling pathway. Am J Physiol Heart Circ Physiol. 2008;295:H130–5.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dhanasekaran DN. Reddy EP.JNK signaling in apoptosis. Oncogene. 2008;27:6245–51.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chaanine AH, Jeong D, Liang L, Chemaly ER, Fish K, Gordon RE, et al. JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis. 2012;3:265.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Baines CP. Molkentin JD.STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol. 2005;38:47–62.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Dorn GW. 2nd.Adrenergic pathways and left ventricular remodeling. J Card Fail. 2002;8(6 Suppl):S370–3.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Yang J, Liu Y, Fan X, Li Z, Cheng Y. A pathway and network review on beta-adrenoceptor signaling and beta blockers in cardiac remodeling. Heart Fail Rev. 2014;19:799–814.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Cannavo A, Koch WJ. Targeting β3-Adrenergic Receptors in the Heart: Selective Agonism and β-Blockade. J Cardiovasc Pharmacol. 2017;69:71–8.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Patten RD, Konstam MA. Ventricular remodeling and the renin angiotensin aldosterone system. Congest Heart Fail. 2000;6:187–92.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Morrone D, Marzilli M. Role of RAAS inhibition in preventing left ventricular remodeling in patients post myocardial infarction. Heart Metab. 2010;47:9–13.Google Scholar
  101. 101.
    Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87:1285–342.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Zak R. Cell proliferation during cardiac growth. Am J Cardiol. 1973;31:211–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952–61.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110:341–50.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006;103:18284–9.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Fedak PW, Verma S, Weisel RD, Li RK. Cardiac remodeling and failure From molecules to man (Part II). Cardiovasc Pathol. 2005;14:49–60.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Simpson DG, Terracio L, Terracio M, Price RL, Turner DC, Borg TK. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol. 1994;161:89–105.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Hornberger LK, Singhroy S, Cavalle-Garrido T, Tsang W, Keeley F, Rabinovitch M. Synthesis of extracellular matrix and adhesion through beta (1) integrins are critical for fetal ventricular myocyte proliferation. Circ Res. 2000;87:508–15.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ross RS, Pham C, Shai SY, Goldhaber JI, Fenczik C, Glembotski CC, et al. Beta1 integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res. 1998;82:1160–72.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Ding B, Price RL, Goldsmith EC, Borg TK, Yan X, Douglas PS, et al. Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure. Circulation. 2000;101:2854–62.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol. 1989;13:1637–52.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Marijianowski MM, Teeling P, Mann J, Becker AE. Dilated cardiomyopathy is associated with an increase in the type I/type III collagen ratio: a quantitative assessment. J Am Coll Cardiol. 1995;25:1263–72.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Woodiwiss AJ, Tsotetsi OJ, Sprott S, Lancaster EJ, Mela T, Chung ES, et al. Reduction in myocardial collagen cross-linking parallels left ventricular dilatation in rat models of systolic chamber dysfunction. Circulation. 2001;103:155–60.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Bonnin CM, Sparrow MP, Taylor RR. Collagen synthesis and content in right ventricular hypertrophy in the dog. Am J Phys. 1981;241:H708–13.Google Scholar
  115. 115.
    Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Schlöndorff J, Blobel CP. Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci. 1999;112:3603–17.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Chancey AL, Brower GL, Janicki JS. Cardiac mast cell-mediated activation of gelatinase and alteration of ventricular diastolic function. Am J Physiol Heart Circ Physiol. 2002;282:H2152–8.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Romanic AM, Burns-Kurtis CL, Gout B, Berrebi-Bertrand I, Ohlstein EH. Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci. 2001;68:799–814.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ 3rd, Spinale FG. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation. 1998;97:1708–15.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Yarbrough WM, Mukherjee R, Brinsa TA, Dowdy KB, Scott AA, Escobar GP, et al. Matrix metalloproteinase inhibition modifies left ventricular remodeling after myocardial infarction in pigs. J Thorac Cardiovasc Surg. 2003;125:602–10.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Dixon JA, Spinale FG. Myocardial remodeling: cellular and extracellular events and targets. Annu Rev Physiol. 2011;73:47–68.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Zimmerman SD, Criscione J, Covell JW. Remodeling in myocardium adjacent to an infarction in the pig left ventricle. Am J Physiol Heart Circ Physiol. 2004;287:H2697–704.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    MacKenna D, Summerour SR, Villarreal FJ. Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res. 2000;46:257–63.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Civitarese RA, Kapus A, McCulloch CA, Connelly KA. Role of integrins in mediating cardiac fibroblast-cardiomyocyte cross talk: a dynamic relationship in cardiac biology and pathophysiology. Basic Res Cardiol. 2017;112:116.CrossRefGoogle Scholar
  125. 125.
    Li YY, McTiernan CF, Feldman AM. Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res. 1999;42:162–72.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Vanhoutte D, Heymans S. TIMPs and cardiac remodeling: ‘Embracing the MMP-independent-side of the family’. J Mol Cell Cardiol. 2010;48:445–53.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Baghelai K, Marktanner R, Dattilo JB, Dattilo MP, Jakoi ER, Yager DR, et al. Decreased expression of tissue inhibitor of metalloproteinase 1 in stunned myocardium. J Surg Res. 1998;77:35–9.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Tyagi SC, Kumar S, Voelker DJ, Reddy HK, Janicki JS, Curtis JJ. Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem. 1996;63:185–98.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Li YY, Feldman AM, Sun Y, McTiernan CF. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation. 1998;98:1728–34.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Fedak PW, Altamentova SM, Weisel RD, Nili N, Ohno N, Verma S, et al. Matrix remodeling in experimental and human heart failure: a possible regulatory role for TIMP-3. Am J Physiol Heart Circ Physiol. 2003;284:H626–34.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Hervas A, Ruiz-Sauri A, Gavara J, Monmeneu JV, de Dios E, Rios-Navarro C, et al. A Multidisciplinary Assessment of Remote Myocardial Fibrosis After Reperfused Myocardial Infarction in Swine and Patients. J Cardiovasc Transl Res. 2016;9:321–33.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Jellis C, Martin J, Narula J, Marwick TH. Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol. 2010;56:89–97.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Carrick D, Haig C, Rauhalammi S, Ahmed N, Mordi I, McEntegart M, et al. Pathophysiology of LV Remodeling in Survivors of STEMI: Inflammation, Remote Myocardium, and Prognosis. JACC Cardiovasc Imaging. 2015;8(7):779–89.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Biesbroek PS, Amier RP, Teunissen PFA, Hofman MBM, Robbers LFHJ, van de Ven PM, et al. Changes in remote myocardial tissue after acute myocardial infarction and its relation to cardiac remodeling: A CMR T1 mapping study. PLoS One. 2017;12:e0180115.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wilson EM, Moainie SL, Baskin JM, Lowry AS, Deschamps AM, Mukherjee R, et al. Region- and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation. 2003;107:2857–63.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Aukrust P, Gullestad L, Lappegård KT, Ueland T, Aass H, Wikeby L, et al. Complement activation in patients with congestive heart failure: effect of high-dose intravenous immunoglobulin treatment. Circulation. 2001;104:1494–500.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Diwan A, Tran T, Misra A, Mann DL. Inflammatory mediators and the failing heart: a translational approach. Curr Mol Med. 2003;3:161–82.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Caforio AL, Mahon NG, Baig MK, Tona F, Murphy RT, Elliott PM, et al. Prospective familial assessment in dilated cardiomyopathy: cardiac autoantibodies predict disease development in asymptomatic relatives. Circulation. 2007;115:76–83.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Hofmann U, Frantz S. Role of T-cells in myocardial infarction. Eur Heart J. 2016;37:873–9.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Nikolich-Žugich J. Aging of the T cell compartment in mice and humans: from no naive expectations to foggy memories. J Immunol. 2014;193:2622–9.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    von Andrian UH. Mackay CR.T-cell function and migration. Two sides of the same coin. N Engl J Med. 2000;343:1020–34.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Komarowska I, Coe D, Wang G, Haas R, Mauro C, Kishore M, et al. Hepatocyte Growth Factor Receptor c-Met Instructs T Cell Cardiotropism and Promotes T Cell Migration to the Heart via Autocrine Chemokine Release. Immunity. 2015;42:1087–99.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Ammirati E, Moroni F, Magnoni M, Camici PG. The role of T and B cells in human atherosclerosis and atherothrombosis. Clin Exp Immunol. 2015;179:173–87.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Yang Z, Day YJ, Toufektsian MC, Xu Y, Ramos SI, Marshall MA, et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation. 2006;114:2056–64.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Klingenberg R, Brokopp CE, Grivès A, Courtier A, Jaguszewski M, Pasqual N, et al. Clonal restriction and predominance of regulatory T cells in coronary thrombi of patients with acute coronary syndromes. Eur Heart J. 2015;36:1041–8.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Boag SE, Das R, Shmeleva EV, Bagnall A, Egred M, Howard N, et al. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J Clin Invest. 2015;125:3063–76.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, Bauersachs J, Ertl G, et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation. 2012;125:1652–63.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B, Frey A, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res. 2014;115:55–67.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Curato C, Slavic S, Dong J, Skorska A, Altarche-Xifró W, Miteva K, et al. Identification of noncytotoxic and IL-10-producing CD8+AT2R+ T cell population in response to ischemic heart injury. J Immunol. 2010;185:6286–93.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Wang J, Frangogiannis NG. In: Cokkinos DV, editor. Repair of the infarcted myocardium in Introduction to Translational Cardiovascular Research. Cham: Springer; 2015. p. 279–97.Google Scholar
  151. 151.
    Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. Nat Rev Cardiol. 2011;8:292–300.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Frangogiannis NG. The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol. 2014;63:185–95.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    APEX AMI Investigators, Armstrong PW, Granger CB, Adams PX, Hamm C, Holmes D Jr, et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA. 2007;297:43–51.CrossRefGoogle Scholar
  154. 154.
    Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, et al. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res. 1999;84:1095–109.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Shishido T, Nozaki N, Yamaguchi S, Shibata Y, Nitobe J, Miyamoto T, et al. Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation. 2003;108:2905–10.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Timmers L, Sluijter JP, van Keulen JK, Hoefer IE, Nederhoff MG, Goumans MJ, et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res. 2008;102:257–64.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Lu C, Ren D, Wang X, Ha T, Liu L, Lee EJ, et al. Toll-like receptor 3 plays a role in myocardial infarction and ischemia/reperfusion injury. Biochim Biophys Acta. 1842;2014:22–31.Google Scholar
  158. 158.
    Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-kB in the heart: to be or not to NF-κB. Circ Res. 2011;108:1122–32.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53:31–47.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Frangogiannis NG. Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res. 2004;53:585–95.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood. 2000;96:34–40.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Gharaee-Kermani M, Denholm EM, Phan SH. Costimulation of fibroblast collagen and transforming growth factor beta1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J Biol Chem. 1996;271:17779–84.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96:881–9.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, et al. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol. 2008;173:57–67.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Saxena A, Chen W, Su Y, Rai V, Uche OU, Li N, et al. IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J Immunol. 2013;191:4838–48.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, et al. Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation. 1998;98:699–710.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Middleton J, Patterson AM, Gardner L, Schmutz C, Ashton BA. Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood. 2002;100:3853–60.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Lefer DJ, Shandelya SM, Serrano CV Jr, Becker LC, Kuppusamy P, Zweier JL. Cardioprotective actions of a monoclonal antibody against CD-18 in myocardial ischemia-reperfusion injury. Circulation. 1993;88:1779–87.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Faxon DP, Gibbons RJ, Chronos NA, Gurbel PA, Sheehan F, HALT-MI Investigators. The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J Am Coll Cardiol. 2002;40:1199–204.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204:3037–47.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ Res. 2014;114:266–82.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, et al. Myocardial infarction accelerates atherosclerosis. Nature. 2012;487:325–9.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Emami H, Singh P, MacNabb M, Vucic E, Lavender Z, Rudd JH, et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc Imaging. 2015;8:121–30.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Frangogiannis NG, Mendoza LH, Ren G, Akrivakis S, Jackson PL, Michael LH, et al. MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol. 2003;285:H483–92.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Frangogiannis NG, Perrard JL, Mendoza LH, Burns AR, Lindsey ML, Ballantyne CM, et al. Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation. 1998;98:687–98.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Chen W, Saxena A, Li N, Sun J, Gupta A, Lee DW, et al. Endogenous IRAK-M attenuates postinfarction remodeling through effects on macrophages and fibroblasts. Arterioscler Thromb Vasc Biol. 2012;32:2598–608.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Dean RG, Balding LC, Candido R, Burns WC, Cao Z, Twigg SM, et al. Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem. 2005;53:1245–56.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Carrillo-García C, Prochnow S, Simeonova IK, Strelau J, Hölzl-Wenig G, Mandl C, et al. Growth/differentiation factor 15 promotes EGFR signalling, and regulates proliferation and migration in the hippocampus of neonatal and young adult mice. Development. 2014;141:773–83.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Frangogiannis NG, Mendoza LH, Lindsey ML, Ballantyne CM, Michael LH, Smith CW, et al. IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol. 2000;165:2798–808.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Lacraz S, Nicod LP, Chicheportiche R, Welgus HG. Dayer JM.IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J Clin Invest. 1995;96:23182.CrossRefGoogle Scholar
  181. 181.
    Cochain C, Channon KM, Silvestre JS. Angiogenesis in the infarcted myocardium. Antioxid Redox Signal. 2013;18:1100–13. 04-2310PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Dobaczewski M, Akrivakis S, Nasser K, Michael LH, Entman ML, Frangogiannis NG. Vascular mural cells in healing canine myocardial infarcts. J Histochem Cytochem. 2004;52:1019–29.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, et al. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxidative Med Cell Longev. 2017;2017:3920195.CrossRefGoogle Scholar
  184. 184.
    Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007;356:1140–51.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Frati G, Schirone L, Chimenti I, Yee D, Biondi-Zoccai G, Volpe M, et al. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res. 2017;113:378–88.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Westman PC, Lipinski MJ, Torguson R. Waksman R.A comparison of cangrelor, prasugrel, ticagrelor, and clopidogrel in patients undergoing percutaneous coronary intervention: A network meta-analysis. Cardiovasc Revasc Med. 2017;18:79–85.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Rupprecht HJ, Blankenberg S, Bickel C, Rippin G, Hafner G, Prellwitz W, et al. Impact of viral and bacterial infectious burden on long-term prognosis in patients with coronary artery disease. Circulation. 2001;104:25–31.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;36:356–67.CrossRefGoogle Scholar
  190. 190.
    Sawyer DB, Siwik DA, Xiao L, Pimentel DR, Singh K, Colucci WS. Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol. 2002;34:379–88.CrossRefGoogle Scholar
  191. 191.
    Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol. 2001;280:C53–60.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49:241–8.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115:500–8.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Burgoyne JR, Mongue-Din H, Eaton P, Shah AM. Redox signaling in cardiac physiology and pathology. Circ Res. 2012;111:1091–106.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res. 2011;108:837–46.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Shiomi T, Tsutsui H, Matsusaka H, Murakami K, Hayashidani S, Ikeuchi M, et al. Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation. 2004;109:544–9.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Gomes KM, Campos JC, Bechara LR, Queliconi B, Lima VM, Disatnik MH, et al. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc Res. 2014;103:498–508.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Peterzan MA, Lygate CA, Neubauer S, Rider O. Metabolic remodelling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol. 2017:ajpheart.00731.2016.Google Scholar
  200. 200.
    Shen W, Asai K, Uechi M, Mathier MA, Shannon RP, Vatner SF, et al. Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: a compensatory role for the parallel loss of creatine. Circulation. 1999;100:2113–8.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Kapelko VI, Kupriyanov VV, Novikova NA, Lakomkin VL, Steinschneider AY, Severina MY, et al. The cardiac contractile failure induced by chronic creatine and phosphocreatine deficiency. J Mol Cell Cardiol. 1988;20:465–79.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Newton AC, Antal CE, Steinberg SF. Protein kinase C mechanisms that contribute to cardiac remodelling. Clin Sci (Lond). 2016;130:1499–510.CrossRefGoogle Scholar
  203. 203.
    Hambleton M, Hahn H, Pleger ST, Kuhn MC, Klevitsky R, Carr AN, et al. Pharmacological- and gene therapy-based inhibition of protein kinase Calpha/beta enhances cardiac contractility and attenuates heart failure. Circulation. 2006;114:574–82.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Braz JC, Bueno OF, De Windt LJ, Molkentin JD. PKC alpha regulates the hypertrophic growth of cardiomyocytes through extracellular signal-regulated kinase1/2 (ERK1/2). J Cell Biol. 2002;156:905–19.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, et al. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med. 2004;10:248–54.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Dorn GW 2nd, Souroujon MC, Liron T, Chen CH, Gray MO, Zhou HZ, et al. Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase C translocation. Proc Natl Acad Sci U S A. 1999;96:12798–803.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Murriel CL, Mochly-Rosen D. Opposing roles of delta and epsilonPKC in cardiac ischemia and reperfusion: targeting the apoptotic machinery. Arch Biochem Biophys. 2003;420:246–54.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Churchill EN, Mochly-Rosen D. The roles of PKCdelta and epsilon isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem Soc Trans. 2007;35:1040–2.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann JP, Baud L. The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res. 2012;96:38–45.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Peers C. The G. L. Brown Prize Lecture. Hypoxic regulation of ion channel function and expression. Exp Physiol. 2002;87:413–22.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Topkara VK, Mann DL. Clinical applications of miRNAs in cardiac remodeling and heart failure. Per Med. 2010;7:531–48.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res. 2013;113:676–89.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Devaux Y, Vausort M, McCann GP, Kelly D, Collignon O, Ng LL, et al. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS One. 2013;8:e70644.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Devaux Y, Vausort M, McCann GP, Zangrando J, Kelly D, Razvi N, et al. MicroRNA-150: a novel marker of left ventricular remodeling after acute myocardial infarction. Circ Cardiovasc Genet. 2013;6:290–8.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124:1537–47.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Kumarswamy R, Lyon AR, Volkmann I, Mills AM, Bretthauer J, Pahuja A, et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J. 2012;33:1067–75.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Wahlquist C, Jeong D, Rojas-Muñoz A, Kho C, Lee A, Mitsuyama S, et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014;508:531–5.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Garikipati VN, Verma SK, Jolardarashi D, Cheng Z, Ibetti J, Cimini M, et al. Therapeutic Inhibition of miR-375 Attenuates Post-MI Inflammatory Response and Left Ventricular Dysfunction via PDK-1-AKT Signaling Axis. Cardiovasc Res. 2017;  https://doi.org/10.1093/cvr/cvx052.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Bernardo BC, Gao XM, Winbanks CE, Boey EJ, Tham YK, Kiriazis H, et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci U S A. 2012;109:17615–20.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103:18255–60.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heart and Vessel DepartmentBiomedical Research Foundation, Academy of Athens - Gregory SkalkeasAthensGreece

Personalised recommendations