Advertisement

Chemicals in the Environment

  • Patrick L. Iversen
Chapter

Abstract

There are no anthropic chemically naïve humans on earth anymore. The past century was the first in human history in which humans harnessed the power of chemistry to enhance survival and quality of life on a global scale. The age of the pharmaceutical industry, the rise of the agricultural industry, and the petroleum era coincide over the past 100 years. The excitement and profits of the chemistry century lead to accumulation of concern. Dilution is not really a solution to pollution but degradation helps, the levels of chemicals in our environment is the net result of chemicals released minus chemicals degraded. Life on earth is demonstrating just how resilient it can be to new potent chemicals.

Keywords

Pharmaceutically active compounds Endocrine disrupting chemicals Carcinogen Volatile organic compounds Pesticides 

References

  1. Amadasi A, Mozzarelli A, Meda C, Maggi A, Cozzini P. Identification of xenoestrogens in food additives by an integrated in silico and in vitro approach. Chem Res Toxicol. 2009;22(1):52–63.CrossRefGoogle Scholar
  2. Babadjouni RM, et al. Clinical effects of air pollution on the central nervous system; a review. J Clin Neurosci. 2017;43:16–24.CrossRefGoogle Scholar
  3. Beaudoin JD, Perreault JP. 5’-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res. 2010;38:7022–36.CrossRefGoogle Scholar
  4. Beaudoin JD, Perreault JP. Exploring mRNA 3’-UTR G-quadruplexes: evidence of roles in both alternate polyadenylation and mRNA shortening. Nucleic Acids Res. 2013;41(11):5898–911.CrossRefGoogle Scholar
  5. Bell ML, Davis DL, Fletcher T. A retrospective assessment of mortality from the London smog episode of 1952: the role of influenza and pollution. Environ Health Perspectives. 2004;112:6–8. PMID 14698923CrossRefGoogle Scholar
  6. Bonnal S, Schaeffer C, Creancier L, Clamens S, Moine H, Prats AC, Vagner S. A single internal ribosome entry site containing a G Quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem. 2003;278(41):39330–6.CrossRefGoogle Scholar
  7. Bouissou-Schurtz C, Houeto P, Guerbet M, Bachelot M, Casellas C, Mauclaire AC, Panetier P, Delval C, Masset D. Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey. Regul Toxicol Pharmacol. 2014;69:296–303.CrossRefGoogle Scholar
  8. Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, et al. Aquatic ecotoxicology of fluoxetine. Toxicol Lett. 2003;142:169–83.CrossRefGoogle Scholar
  9. Buening MK, Wislocki PG, Levin W, Yagi H, Thakker DR, Akagi H, Koreeda M, Jerina DM, Conney AH. Tumorigenicity of the optical enantiomers of the diastereomeric benzo(a)pyrene-7,8-diol-9,10-epoxides in newborn mice: exceptional activity of (+) 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene. Proc Natl Acad Sci U S A. 1978;75:5358–61.CrossRefGoogle Scholar
  10. Butylated Hydroxyanisole (BHA). CAS No. 25013–16-5, Report on Carcinogens. 11th ed. National Institutes of Health.Google Scholar
  11. Cao C, Jiang W, Wang B, Fang J, Lang J, Tian G, Jiang J, Zhu TF. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Env Sci Technol. 2014;48(3):1499–507.CrossRefGoogle Scholar
  12. Carson R. Silent Spring. Boston: Houghton Mifflin Harcourt; 1962.Google Scholar
  13. Chen CH, et al. Aflatoxin exposure and hepatitis C virus in advanced liver disease in a hepatitis C virus endemic area of Taiwan. Am J Trop Med Hyg. 2007;77:747–52.CrossRefGoogle Scholar
  14. Christensen AM, Markussen B, Baun A, Halling-Sorensen B. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges. Chemosphere. 2009;77:351–8.CrossRefGoogle Scholar
  15. Clancy L, Goodman P, Sinclair H, Dockery DW. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet. 2002;360:1210–4.CrossRefGoogle Scholar
  16. Dong Z, Senn DB, Moran RE, Shine JP. Prioritizing environmental risk of prescription pharmaceuticals. Regul Toxicol Pharmacol. 2013;65(1):60–7.  https://doi.org/10.1016/j.yrtph.2012.07.003.CrossRefPubMedGoogle Scholar
  17. Dunn R. In retrospect: silent spring. Nature. 2012;485:578–9.  https://doi.org/10.1038/485578a.CrossRefGoogle Scholar
  18. Elhkim MO, Héraud F, Bemrah N, et al. New considerations regarding the risk assessment on Tartrazine: an update toxicological assessment, intolerance reactions and maximum theoretical daily intake in France. Regul Toxicol Pharmacol. 2007;47(3):308–16.CrossRefGoogle Scholar
  19. Federal Trade Commission Report of Antibiotics Manufacture. Government Printing Office, Washington, DC. 1958, June.Google Scholar
  20. Gounder C. A better treatment for Hepatitis C. The New Yorker. 2013.Google Scholar
  21. Hutchinson TH, Beesley A, Frickers PE, Readman JS, Shaw JP, Straub J. Extending the environmental risk assessment for oseltamivir (Tamiflu) under pandemic use conditions to the coastal marine compartment. Environ Int. 2009;35(6):931–6.CrossRefGoogle Scholar
  22. Jeannot E, et al. Increased incidence of aflatoxin B1-induced liver tumors in hepatitis virus C transgenic mice. Int J Cancer. 2012;130(6):1347–56.CrossRefGoogle Scholar
  23. Kralovicova J, Lages A, Patel A, Dhir A, Buratti E, Searle M, Vorechovsky I. Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex. Nucleic Acids Res. 2014;42:8161–73.CrossRefGoogle Scholar
  24. Lakshmanan A, Chiu YHM, Coull BA, et al. Associations between prenatal traffic-related air pollution exposure and birth weight: modification by sex and maternal pre-pregnancy body mass index. Environ Res. 2015;137:268–77.CrossRefGoogle Scholar
  25. Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Basu N, Balde AB, Bertollino R, Bose-Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A. The lancet commission on pollution and health. Lancet. 2017;  https://doi.org/10.1016/S0140-6736(17)32345-0.CrossRefGoogle Scholar
  26. Lim S, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2224–60.CrossRefGoogle Scholar
  27. Lund University Press. Oestrogen in birth control pills has a negative impact on fish. 2016, March 3.Google Scholar
  28. MacLeod MC, Kootstra A, Mansfield BK, Slaga TJ, Selkirk JK. Specificity in interaction of benzo[a]pyrene with nuclear macromolecules: implication of derivatives of two dihydrodiols in protein binding. Proc Natl Acad Sci U S A. 1980;77:6396–400.CrossRefGoogle Scholar
  29. Marcel V, Trran PLT, Sagne C, Martel-Planche G, Vasliin L, Teulade-Fichou MP, Hall J, Mergny JL, Hainaut P, Van Dyck E. G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis. 2011;32:271–8.CrossRefGoogle Scholar
  30. Martin JM, Saaristo M, Bertram MG, Lewis PJ, Coggan TL, Clarke BO, Wong BBM. The psychoactive pollutant fluoxetine compromises antipredator behaviour in fish. Environ Pollut. 2016;222:592–9.CrossRefGoogle Scholar
  31. Mata JE, Joshi S, Palen B, Pirruccello SJ, Jackson JD, Elias N, Page TJ, Medlin KL, Iversen PL. A hexameric phosphorothioate oligonucleotide telomerase inhibitor arrests growth of Burkitt’s lymphoma cells In Vitro and In Vivo. Toxicol Appl Pharmacol. 1997;144:189–97.CrossRefGoogle Scholar
  32. McGovern C. Birth control in drinking water: a fertility catastrophe in the making? National Catholic Register. 2015, June 16.Google Scholar
  33. Mennigen JA, Lado WE, Zamora JM, Duarte-Guterman P, Langlois VS, Metcalfe CD, Chang JP, Moon TW, Trudeau VL. Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus. Aquat Toxicol. 2010;100(4):354–36.CrossRefGoogle Scholar
  34. Milic N, Milanovic M, Letic MG, Sekulic MT, Radonic J, Mihajlovic I, Miloradov MV. Occurrence of antibiotics as emerging contaminant substances in aquatic environment. Int J Environ Health Res. 2013;23(4):296–310.CrossRefGoogle Scholar
  35. Miller GT. Chapter 9. In: Sustaining the earth. 6th ed. Pacific Grove: Thompson Learning, Inc; 2004. p. 211–6.Google Scholar
  36. Miller EC, Miller JA, Sandin RB, Brown RK. The carcinogenic activities of certain analogues of 2-acetylainofluorene in the rat. Cancer Res. 1949;9:504–9.PubMedGoogle Scholar
  37. Miller EC, Miller J, Enomoto M. The comparative carcinogenicities of 2-acetylaminofluorene and its N-hydroxy metabolite in mice, hamsters, and Guinea pigs. Cancer Res. 1964;24:2018–26.PubMedGoogle Scholar
  38. Mills NL, Donaldson K, Hadoke PW, Boon NA, Macnee W, Cassee FR, Sandstrom T, Blomberg A, Newby DE. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med. 2009;6:36–44.CrossRefGoogle Scholar
  39. Munroe SH, Morales CH, Duyck TH, Waters PD. Evolution of the antisense overlap between genes for thyroid hormone receptor and rev-erba and characterization of an exonic F-rich element that regulates splicing of TRα2 mRNA. PLoS One. 2015;10(9):e0137893.  https://doi.org/10.1371/journal.pone.0137893.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nemery B, Hoet PHM, Nemmar A. The Meuse Valley fog of 1930: an air pollution disaster. Lancet. 2001;357(9257):704–8.CrossRefGoogle Scholar
  41. Newby DE, Mannucci PM, Tell GS, et al. Expert position paper on air pollution and cardiovascular disease. Eur Heart J. 2015;36:83–93.CrossRefGoogle Scholar
  42. Parry W. Water pollution caused by birth control poses Dilema. Live science. 2012, May 23. www.live science/20532-birth-control-water-pollution.htmlGoogle Scholar
  43. Pelling JC, Slaga TJ, DiGiovanni J. Formation and persistence of DNA, RNA, and protein adducts in mouse skin exposed to pure optical enantiomers of 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene in vivo. Cancer Res. 1984;44:1081–6.PubMedGoogle Scholar
  44. Petrie B, Barden R, Kasprzyk-Hodern B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015;72:3–27.CrossRefGoogle Scholar
  45. Pimentel D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ Dev Sustain. 2005;7:229–52.CrossRefGoogle Scholar
  46. Ribeiro MM, Teixeira GS, Martins L, Marques MR, de Souza AP, Line SRP. G-quadruplex formation enhances splicing efficiency of PAX9 intron 1. Hum Genet. 2015;134:37–44.CrossRefGoogle Scholar
  47. Roholm K. The fog disasterin the Meuse Valley, 1930: a fluorine intoxication. J Ind Hyg Toxicol. 1937;19(3):136–7.Google Scholar
  48. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med. 2000;343:1742–9.CrossRefGoogle Scholar
  49. Sasaki T, Yoshidda T. Experimentelle Erzeugung des Lebercarcinomas durch Futterung mit o-aminoazotoluol. VIrchows Arch Abt A Pathol Anat. 1935;295:175–200.CrossRefGoogle Scholar
  50. Schultz MM, Painter MM, Bartell SE, Logue A, Furlong ET, Werner SL, Schoenfuss HL. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquat Toxicol. 2011;104(1–2):38–47.CrossRefGoogle Scholar
  51. Science News. Feature “Bad Air”. 2017, September 30.Google Scholar
  52. Sirand-Pugnet P, Durosay P, Brody E, Marie J. An intronic (A/U)GGG repeat enhances the splicing of an alternate intron of the chicken β-tropomycin pre-mRNA. Nucleic Acids Res. 1995;23:3501–7.CrossRefGoogle Scholar
  53. Slaga TJ, Bracken WJ, Gleason G, Levin W, Yagi H, Jerina DM, Conney AH. Marked differences in the skin tumor-initiating activities of the optical enantiomers of the diastereomeric benzo(a)pyrene-7,8-diol-9,10-epoxides. Cancer Res. 1979;39:67–71.PubMedGoogle Scholar
  54. Sumpter JP, Donnachie RL, Johnson AC. The apparently very variable potency of the anti-depressant fluoxetine. Aquat Toxicol. 2013;151:57–60.CrossRefGoogle Scholar
  55. Vanesch G. Toxicology of tert-butylhydroquinone (TBHQ). Food Chem Toxicol. 1986;24(10–11):1063–5.CrossRefGoogle Scholar
  56. VOLUME 94- Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins-IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer (IARC) - World Health Organization (WHO). 2010.Google Scholar
  57. Wang X, Ryu D, Houtkooper RH, Auwerx J. Antibiiotic use and abuse: a threat to mitochondria and chloroplasts with impact on research, health, and environment. BioEssays. 2015;37:1045–53.CrossRefGoogle Scholar
  58. Wellenius GA, Burger MR, Coull BA, Schwartz J, Suh HH, Koutrakis P, Schlaug G, Gold DR, Mittleman MA. Ambient air pollution and the risk of acute ischemic stroke. Arch Intern Med. 2012;172:229–34.CrossRefGoogle Scholar
  59. Wilson J, Christensen J. 7 other chemicals in your food CNN 4:20 pm, Feb 10, 2014.Google Scholar
  60. WO1996023508A1: Iversen, Patrick L. and Mata, John E., and US Patent 5, 643,890; Mata, John E. and Iversen, Patrick L.Google Scholar
  61. Yamagawa K, Ichikawa K. Experimentelle Studie uber die Pathogenese der Epithelialgeschwulste. Mitt Med Fakul Kaiserl Univ Tokyo. 1915;15:295–344.Google Scholar
  62. Yu MW, Lien JP, Chiu YH, Santella RM, Liaw YF, Chen CJ. Effect of aflatoxin metabolism and DNA adduct formation on hepatocellular carcinoma among chronic hepatitis B carriers in Taiwan. J Hepatol. 1997;27:320–30.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Patrick L. Iversen
    • 1
  1. 1.LS PharmaOregon State UniversityGrand JctUSA

Personalised recommendations