CURE 2000

  • Patrick L. Iversen


Cancer cells differ from non-cancer cells and face elimination from the body. The cancer persists because these cells are remarkable resilient. The evade immune responses and proliferate faster than they die. Medical interventions employed are both highly selective and effective in killing tumor cells preferentially over normal cells. The tumor resilience extends to development of resistance to chemotherapies such that some tumors reappear over time. Circumstances where resilience poses a threat confirms our genomes capacity to support the survival of the cell, even a tumor cell.


Leukemia Oncogenes p53 OL(1)p53 bcr-abl c-myb 


  1. Alawadi S, Ghabreau L, Alsaleh M, Abdulaziz Z, Rafeek M, Akil N, Alkhalaf M. P 53 gene polymorphisms and breast cancer risk in Arab women. Med Oncol. 2011;28(3):709–15.CrossRefGoogle Scholar
  2. Bayever E, Iversen P, Smith L, Spinolo J, Zon G. Guest editorial: systemic human antisense therapy begins. Antisense Res Dev. 1992a;2:109–10.CrossRefGoogle Scholar
  3. Bayever E, Haines K, Iversen P, Spinolo J, Kay D, Smith L. Antisense p 53 oligodeoxynucleotides as potential human anti-leukemic agents. Am Assoc Cancer Res. 1992b.Google Scholar
  4. Bayever E, Cornish K, Iversen P, Smith L, Spinolo J, Zon G. In vitro and In vivo studies with a human p 53 antisense oligonucleotide phophorothioate. INSERM/NIH Conference on “Antisense Oligonucleotides and Ribonucleases H” in Arcachon, France. 1992c.Google Scholar
  5. Bayever E, Haines K, Iversen PL, Ruddon RW, Pirruccello SJ, Mountjoy CP, Arneson MA, Smith LJ. Selective cytotoxicity of human leukemic Myeloblasts produced by oligodeoxyribonucleic phosphorothioate complementary to p 53 nucleotide sequences. Leuk Lymphoma. 1993a;12:223–31.CrossRefGoogle Scholar
  6. Bayever E, Iversen PL, Bishop M, Sharp JG, Tewary HK, Arneson MA, Pirruccello SJ, Ruddon RW, Kessinger A, Zon G, Armitage JO. Systemic administration of a phosphorothioate oligonucleotide with a sequence complementary to p 53 for acute myelogenous leukemia and myelodysplastic syndrome: initial results of a phase I trial. Antisense Res Dev. 1993b;3:383–90.CrossRefGoogle Scholar
  7. Bayever E, Haines KM, Copple BL, Joshi SS, Iversen PL. Interactions between antisense oligonucleotides to p 53 mRNA and reactive oxygen in acute myelogenous leukemia. Am Assoc Cancer Res. 1995.Google Scholar
  8. Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–4.CrossRefGoogle Scholar
  9. Bishop MR, Iversen PL, Bayever E, Sharp JG, Greiner TC, Ruddon R, Zon G, Spinolo J, Arneson M, Armitage JO, Kessinger A. Phase I trial of an antisense oligonucleotide OL(1)p 53 in hematological malignancies. J Clin Oncol. 1995;14(4):1320–6.CrossRefGoogle Scholar
  10. Carver JH, Hatch FT, Branscomb EW. Estimating maximum limits to mutagenic potency from cytotoxic potency. Nature. 1979;279:154–6.CrossRefGoogle Scholar
  11. Copple B, Bayever E, Iversen PL. Oligonucleotides directed to p 53 mRNA cause increased sensitivity to radical oxygen induced cytotoxicity. Am Assoc Cancer Res. 1994a.Google Scholar
  12. Copple BL, Bayever E, Haines KM, Iversen PL. An oligonucleotide complementary to p 53 mRNA acts synergistically with oxidative stress and DNA damage to stimulate cell death of acute myelogenous leukemia. UNMC Student Research Forum (Abs 12; Herbert Davis Award Winner). 1994b.Google Scholar
  13. Copple BL, Gmeiner WM, Iversen PL. Reaction between metabolically activated acetaminophen and Phosphorothioate oligonucleotides. Toxicol Appl Pharmacol. 1995;133:53–63.CrossRefGoogle Scholar
  14. Cornish KG, Iversen PL, Smith LJ, Arneson MA, Bayever E. Cardiovascular effects of a phosphorothioate oligonucleotide with sequence antisense to p 53 in the concious rhesus monkey. Pharmacol Commun. 1993;3:239–47.Google Scholar
  15. Cortes J, Kantarjian H, Ball ED, DiPersio J, Kolitz JE, Fernandez HF, Goodman M, Borthakur G, Baer MR, Wetzler M. Phase 2 randomized study of p 53 antisense oligonucleotide (Cenersen) plus idarubicin with or without cytarabine in refractory and relapsed acute myeloid leukemia. Cancer. 2012;118:418–27.CrossRefGoogle Scholar
  16. Gewirtz AM, Anfossi G, Venturelli D, Valpreda S, Sims R, Calabretta B. G1/S transition in normal human T-lymphocytes requires the nuclear protein encoded by c-myb. Science. 1989;245:180–3.CrossRefGoogle Scholar
  17. Greene MH, Harris EL, Gershenson DM, et al. Melphalan may be a more potent leukemogen than cyclophosphamide. Ann Intern Med. 1986;105:360–7.CrossRefGoogle Scholar
  18. Hitzler JK, Zipursky A. Origins of leukemia in children with down syndrome. Nat Rev Cancer. 2005;5:11–20.CrossRefGoogle Scholar
  19. Hollstein M, Sidransky D, Vogelstein B, Harris CC. P 53 mutations in human cancers. Science. 1991;253(5015):49–53.CrossRefGoogle Scholar
  20. Hunter FT. Chronic exposure of benezene. II. The clinical effects. J Ind Hyg Toxicol. 1939;21:331.Google Scholar
  21. Iversen PL. Chapter 26: In vivo studies with phosphorothioate oligonucleotides: rationale for systemic therapy. In: Crooke S, Lebleau B, editors. Antisense research and applications. Boca Raton: CRC Press; 1993.Google Scholar
  22. Iversen P, Crouse D, Zon G, Perry G. Binding of antisense phosphorothioate oligonucleotides to murine lymphocytes is lineage specific and inducible. Antisense Res Dev. 1992a;2:223.CrossRefGoogle Scholar
  23. Iversen PL, Zhu S, Meyer A, Zon G. Cellular uptake and subcellular distribution of phosphorothioate oligonucleotides into cultured cells. Antisense Res Dev. 1992b;2:211–22.CrossRefGoogle Scholar
  24. Iversen P, Bayever E, Smith L, Cornish K, Johansson S, Zon G. Phase I study of p 53 antisense Oligodeoxyribonucleotide OL(1)p 53 for refractory or relapse acute Myeloblastic leukemia. In: Second annual conference on antisense RNA and DNA. Kyoto, Japan. 1992c.Google Scholar
  25. Iversen PL, Cornish KG, Iversen LJ, Mata JE, Bylund DB. Bolus intravenous injection of phosphorothioate oligonucleotides causes severe hypotension by acting as a1-adrenergic receptor antagonists. Toxicol Appl Pharmacol. 1999;160:289–96.CrossRefGoogle Scholar
  26. Jiang DK, Yao L, Ren WH, Wang WZ, Peng B, Yu L. TP53 Arg 72Pro polymorphism and endometrial cancer risk: a meta-analysis. Med Oncol. 2011;28(4):1129–35.CrossRefGoogle Scholar
  27. Joshi SS, Wu AG, Verbik DJ, Algarra SM, Bishop MR, Pirruccello SJ, Iversen PL, Jackson JD, Kessinger MA, Sharp JG. Oligonucleotides complementary to c-myb messenger RNA inhibit growth and induce apoptosis in human Burkitt lymphoma cells. Int J Oncol. 1996;8:815–20.PubMedGoogle Scholar
  28. Kendall GM, Little MP, Wakeford R, Bunch KJ, Miles JCH, Nincent TJ, Meara JR, Murphy MFG. A record-based case-controlled study of natural background radiation and the incidence of childhood leukemia and other cancers in Great Britain during 1980–2006. Leukemia. 2017;27(1):3–9.CrossRefGoogle Scholar
  29. Klug SJ, Ressing M, Koenig J, Abba MC, Agorastos T, Brenna SM, Ciotti M, Das BR, Del Mistro A, Dybikowska A, Giuliano AR, Gudleviciene Z, Gyllensten U, Haws AL, Helland A, Herrington CS, Hildesheim A, Humbey O, Jee SH, Kim JW, Madeleine MM, Menczer J, Ngan HY, Nishikawa A, Niwa Y, Pegoraro R, Pillai MR, Ranzani G, Rezza G, Rosenthal AN, Roychoudhury S, Saranath D, Schmitt VM, Sengupta S, Settheetham-Ishida W, Shirasawa H, Snijders PJ, Stoler MH, Suárez-Rincón AE, Szarka K, Tachezy R, Ueda M, van der Zee AG, von Knebel Doeberitz M, Wu MT, Yamashita T, Zehbe I, Blettner M. TP53 codon 72 polymorphism and cervical cancer: a pooled analysis of individual data from 49 studies. Lancet Oncol. 2009;10(8):772–84.CrossRefGoogle Scholar
  30. Mateos MK, Barbaric D, Bryatt SA, Sutton R, Marshall GM. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Trans Pediatr. 2015;4(2):76–92.Google Scholar
  31. McCulloch EA, Till JE. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res. 1960;13(1):115–25.CrossRefGoogle Scholar
  32. McCulloch EA, Till JE. Blast cells in acute myeloblastic leukemia: a model. Blood Cells. 1981;7:63–77.PubMedGoogle Scholar
  33. McCulloch EA, Kelleher CA, Miyauchi J, et al. Heterogeneity in acute myeloblastic leukemia. Leukemia. 1988;3:385–495.Google Scholar
  34. National Center for Biotechnology Information. United States National Institutes of Health. The p 53 tumor suppressor protein. 2017.Google Scholar
  35. Piao JM, Kim HN, Song HR, Kweon SS, Choi JS, Yun WJ, Kim YC, Oh IJ, Kim KS, Shin MH. p 53 codon 72 polymorphism and the risk of lung cancer in a Korean population. Lung Cancer. 2011;73(3):264–7.CrossRefGoogle Scholar
  36. Ratajczak MZ, Kant JA, Luger SM, Hijiya N, Zhang J, Zon G, Gewirtz AM. In vivo treatment of human leukemia in a SCID mouse model with c-myc antisense oligonucleotides. Proc Natl Acad Sci U S A. 1992;89:1710–4.CrossRefGoogle Scholar
  37. Schlegel RA, Iversen PL, Rechsteiner MC. The turnover of tRNAs microinjected into animal cells. Nucleic Acids Res. 1978;5(10):3715–29.CrossRefGoogle Scholar
  38. Skorski T, Nieborowska-Skorska M, Nicolaides NC, Szczylik C, Iversen P, Isso RV, Zon G, Calabretta B. Suppression of Philadelphia leukemia cell growth in mice by bcr-abl antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1994;91:4504–8.CrossRefGoogle Scholar
  39. Smith LJ, McCulloch EA, Benchimol S. Expression of the p 53 oncogene in acute myeloblastic leukemia. J Exp Med. 1986;164:751–61.CrossRefGoogle Scholar
  40. Sonoyama T, Sakai A, Mita Y, Yasuda Y, Kawamoto H, Yagi T, Yoshioka M, Mimura T, Nakachi K, Ouchida M, Yamamoto K, Shimizu K. TP53 codon 72 polymorphism is associated with pancreatic cancer risk in males, smokers and drinkers. Mol Med Rep. 2011;4(3):489–95.PubMedGoogle Scholar
  41. Spinolo J, Iversen P, Smith L, Arneson M, Cook P, Zon G, Bayever E. Antisense p 53 oligodeoxynucleotides for systemic human antileukemic therapy. In: First international conference on “Gene Therapy for Cancer” in San Diego, CA. 1992.Google Scholar
  42. Till JE, McCulloch EA, Siminovitch L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci (USA). 1964;51(1):29–36.CrossRefGoogle Scholar
  43. Vattemi E, Claudio PP. The feasibility of gene therapy in the treatment of head and neck cancer. Head Neck Oncol. 2009;1:3.CrossRefGoogle Scholar
  44. Wang JJ, Zheng Y, Sun L, Wang L, Yu PB, Dong JH, Zhang L, Xu J, Shi W, Ren YC. TP53 codon 72 polymorphism and colorectal cancer susceptibility: a meta-analysis. Mol Biol Rep. 2011;38(8):4847–53.CrossRefGoogle Scholar
  45. Wu AG, Joshi SS, Chan WC, Iversen PL, Jackson JD, Kessinger A, Pirruccello SJ, Sanger WG, Sharp JG, Verbik DJ, Whalen VL, Bishop MR. Effects of BCR-ABL antisense oligonucleotides (AS-ODN) on human chronic myeloid leukemic cells: AS-ODNs as effective purging agents. Leuk Lymphoma. 1995;20:67–76.CrossRefGoogle Scholar
  46. Yu H, Huang YJ, Liu Z, Wang LE, Li G, Sturgis EM, Johnson DG, Wei Q. Effects of MDM2 promoter polymorphisms and p 53 codon 72 polymorphism on risk and age at onset of squamous cell carcinoma of the head and neck. Mol Carcinog. 2011;50(9):697–706.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Patrick L. Iversen
    • 1
  1. 1.LS PharmaOregon State UniversityGrand JctUSA

Personalised recommendations