Advertisement

Analog Genetics

  • Patrick L. Iversen
Chapter

Abstract

Analog genetics describes a continuum of outcomes, phenotypes, created by a discrete or digital set of base pairs in a genome. The concept is in contrast to discrete phenotypes created from discrete base pairs in the genome. The difference is that phenotypes are a distribution of character all arising from the discrete genome. The definition of a gene as the unit of heredity is disputed based on a spectrum of phenotypes resulting from a single gene.

Keywords

Genetic disease Gene splicing Alternate exon Alternate translation Premature termination codon RNA editing Epigenetics Xist G-quartets 

References

  1. Agarwala P, Pandey S, Mapa K, Maiti S. The G-Quadruplex augments translation in the 5’ untranslated region of transforming growth factor β2. Biochemistry. 2013;52:1528–38.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agrawal P, et al. The major G-quadruplex formed in the human BCL-2 proximal promoter adopts a parallel structure with a 13-nt loop in K+ solution. J Am Chem Soc. 2014;136(5):1750–3.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arese M, Chen Y, Florkiewicz RZ, Gualandris A, Shen B, Rifkin DB. Nuclear activities of basic fibroblst growth factor: potentiation of low-serum growth mediated by natural or chimeric nuclear localization signals. Mol Cell Biol. 1999;10:1429–44.CrossRefGoogle Scholar
  4. Ariyo EO, Booy EP, Patel TR, Dzananovic E, McRae EK, Meier M, et al. Biophysical characterization of G-quadruplex recognition in the PITX1 mRNA by the specificity domain of the helicase RHAU. PLoS One. 2015;10(12):e0144510.  https://doi.org/10.1371/journal.pone.0144510.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balkwill GD, Kamila D, Garner TP, Hodgman C, Flint APF, Searle MS. Repression of translation of human estrogen receptor alpha by G-quadruplex formation. Biochemistry. 2009;48:11487–95.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E, Levanon EY. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24:365–76.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beadle GW. Biochemical genetics. Chem Rev. 1945;37:15.CrossRefGoogle Scholar
  8. Beaudoin JD, et al. 5’UTR-G-quadruplex structures acting as translational repressors. Nucleic Acids Res. 2010;38:7022–36.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bird JG, Zhang Y, Tian Y, Panova N, Bervik I, Green L, Liu M, Buckley B, Krasny L, Lee JK, Kaplan CD, Ebright RH, Nickels BE. The mechanism of RNA 5′ caping with NAD+, NADH, and dephopho-CoA. Nature. 2016;535:444–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blobel, G.. Protein targeting. Nobel lecture. 1999, December 8.Google Scholar
  11. Blotkin DB. Myth 2. Life is fragile, requires specific conditions, and can’t adjust easily to change. In: 25Myths that are destroying the environment. Guilford: Taylor Trade Publishing; 2017. p. 9–18.Google Scholar
  12. Blow MJ, Grocock RJ, van Dongen S, Enright AJ, Disck E, Futreal PA, Wooster R, Stratton MR. RNA editing of human microRNAs. Genome Biol. 2006;7:R27.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bohne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff J. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosom Res. 2008;16:203–15.CrossRefGoogle Scholar
  14. Bonnal S, Schaeffer C, Creancier L, Clamens S, Moiine H, Prats AC, Vagner S. A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem. 2003;278(41):39330–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bouadloun F, Donner D, Kurland CG. Codon-specific missense errors in vivo. EMBO J. 1983;2:1351–6.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brazda V, Haronikova L, Liao JCC, Fojta. DNA and RNA quadruplex-binding proteins. Int J Mol Sci. 2014;15:17493–517.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brioschi S, Gualandi F, Scotton C, Armaroli A, Bovolenta M, Falzarano MS, Sabatelli P, Selvatici R, D’Amico A, Aane M, Ricci G, Siciliano G, Tedeschi S, Pini A, Vercelli L, DeGrandis D, Mercuri E, Bertini E, Merlini L, Mongini T, Ferlini A. Gene characterization in symptomiatic female DMD carriers: lack of relationship between X-inactivation, transcriptional DMD allele balancing and phenotype. BMC Med Genet. 2012;13:73.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bulfield G, Siller WG, Wright PAL, Moore KJ. X chromosome liked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A. 1984;81:1189–92.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Burgess TL, Fisher EF, Ross SL, Bready JV, Qian YX, Bayewitch LA, Cohen AM, Herrera CJ, Hu SSF, Kramer TB, Lott FD, Martin FH, Pierce GF, Simonet L, Farrell CL. The antiproliferative activity of c-myc and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc Natl Acad Sci USA. 1995;92:4051–5.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Burrow KL, Coovert DD, Klein CJ, Bulman DE, Kissel JT, Rammohan KW, Burghes AHM, Mendell JR. Dystrophin expression and somatic reversion in prednisone-treated and untreated Duchenne dystrophy. Neurology. 1991;41:661–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Butler LM, Webb Y, Agus DB, Higgins B, Tolentino TR, Kutko MC, LaQuaglia MP, Drobnjak M, Cordon-Cardo C, Scher HI, et al. Inhibition of transformed cell growth and induction of cellular differentiation by pryoxamide, an inhibitor of histone deacetylase. Clin Cancer Res. 2001;7:962–70.PubMedPubMedCentralGoogle Scholar
  22. Chen GF, Inouye M. Role of the AGA/AGG codons, the rarest codons in the global gene expression in Escherishia coli. Curr Opin Biotechnol. 1994;6(5):494–500.Google Scholar
  23. Craigen WJ, Caskey CT. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature. 1986;322:273–5.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–3.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Davies J, Gilbert W, Gorini L. Streptomycin, suppression, and the code. Proc Natl Acad Sci. 1964;51:883–90.PubMedCrossRefPubMedCentralGoogle Scholar
  26. De Rooi SR, Painter RC, Roseboom TJ, Phillips DI, Osmond C, Barker DJ, et al. Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia. 2006;49:637–43.CrossRefGoogle Scholar
  27. Didiot MC, Tian Z, Schaefer C, Subramanian M, Mandel JL, Moine H. The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic Acids Res. 2008;36:4902–12.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dietz HC, Valle D, Francomano CA, Kendzior RJ, Pyeritz RE, Cutting GR. The skipping of constitutive exons in vivo induced by nonsense mutations. Science. 1993;259:680–3.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dominski Z, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci. 1993;90:8673–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dong DW, et al. Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints. BMC Genomics. 2014;15:677.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Du L, Damoiseaux R, Nahas S, Gao K, Hu H, Pollard JM, Goldstine J, Jung ME, Henning SM, Bertoni C, Gatti RA. Nonaminoglycoside compounds induce readthrough of nonsense mutations. J Exp Med. 2009;226(10):2285–97.CrossRefGoogle Scholar
  32. Edelman P, Gallant J. Mistranslation in E coli. Cell. 1977;10:131–7.CrossRefGoogle Scholar
  33. Elfakess R, Sinvani H, Haimov O, Svitkiin Y, Sonenberg N, Dikstein R. Unique translation initiation of mRNAs-containing TISU element. Nucleic Acid Res. 2011;39:7598–609.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Evans JH, Evans TE. Methylation of the deoxynucleic acid of Physarium polucephalum at various periods during the mitotic cycle. J Biol Chem. 1970;245:6436–41.PubMedPubMedCentralGoogle Scholar
  35. Falanga A, Stojanovic O, Kiffer-Moreira T, Pinto S, Millan JL, Vlajovicek K, Baralle M. Exonic splicing signals impose constraints upon the evolution of enzymatic activity. Nucleic Acid Res. 2014;42:5790–8.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Fall AM, Johnson R, Honeyman K, Iversen P, Fletcher S, Wilton SD. Induction of revertant fibers in the mdx mouse using antisense oligonucleotides. Gen Vacc Therapy. 2006;4:3–15.CrossRefGoogle Scholar
  37. Fanin M, Dnieli GA, Cadaldini M, Miorin M, Vitiello L, Angelini C. Dystrophin-positive fibers in Duchenne dystrophy: origin and correlation to clinical course. Muscle Nerve. 1995;18:1115–20.PubMedCrossRefGoogle Scholar
  38. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.PubMedCrossRefGoogle Scholar
  39. Fisette JF, Montagna DR, Mihailescu MR, Wolfe MS. A G-rich element forms a G-quadruplex and regulates BACE1 mRNA alternative splicing. J Neurochem. 2012;121(5):763–73.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fisher CW, Fisher CR, Chuang JL, Lau KS, Chuang DT, Cox RP. Occurrence of a 2-bp (AT) deletion allele and a nonsense (G to T) mutant allele at the E2 (DBT) locus on six patients with maple syrup urine disease: multiple-exon skipping as a secondary effect on the mutations. Am J Hum Genet. 1993;52:414–24.PubMedPubMedCentralGoogle Scholar
  41. Fletcher S, Honeyman K, Fall AM, Harding PL, Johnson RD, Steinhaus JP, Moulton HM, Iversen PL, Wilton SD. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse. Mol Ther. 2007;15(9):1587–92.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I, Okamura H. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155(4):793–806.CrossRefGoogle Scholar
  43. Gibson RA, Hajiamour A, Murer-Orlando M, Buchwald M, Mathew CG. A nonsense mutation and exon skipping in the Fanconi-anemia group C gene. Hum Mol Genet. 1993;2:797–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gingold H, et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell. 2014;158(6):1281–92.PubMedCrossRefPubMedCentralGoogle Scholar
  45. GoDarts GUDPS, Wellcome Trust Case Control Consortium, Zhou K, Bellenguez C, Spencer CC, Bennett AJ, Coleman RL, Tavendale R, Hawley SA, et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet. 2011;43:117–20.CrossRefGoogle Scholar
  46. Gorini L, Kataja E. Phenotypic re pair by streptomycin of defective genotypes in E coli. Proc Natl Acad Sci. 1964;51:487–93.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Griffin LC, Tidmarsh GF, Bock LC, Toole JJ, Leung LLK. In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood. 1993;81(12):3271–6.PubMedPubMedCentralGoogle Scholar
  48. Haines TR, Rodenhiser DI, Ainsworth PJ. Allele specific non-CpG methylation on the Nf1 gene during embryologic development. Dev Biol. 2001;240(2):585–98.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hansel-Hertsch R, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016;48:1267–72.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hayflick L, Moorehead PS. The limited in vitro lifetime of human diploid cell strains. Exp Aging Res. 1961;25:585–621.Google Scholar
  51. Herbst AL, Ulrelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbesterol therapy with tumor appearance in young women. New Engl J Med. 1971;284(15):878–81.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hoffman EP, Morgan JE, Watkins SC, Partridge TA. Somatic reversion/suppression of the mouse phenotype in vivo. J Neurol Sci. 1990;99:9–25.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol. 2009;10:478–87. PubMed: 19546858PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hoogerwaard EM, Bakker E, Ippel PF, Oosterwijk JC, Majoor-Krakauer DF, Leschot NJ, Van Essen AJ, Brunner HG, van der Wow PA, Wilde AA, de Visser M. Sings and symptoms of Duchenne muscular dystrophy and Becker muscular dystrophy among carriers in the Netherlands: a cohort study. Lancet. 1999;353:2116–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hooper SD, Berg OG. Gradients in nucleotide and codon usage along Escherichia coli genes. Nucleic Acids Res. 2000;28(18):3517–23.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hudziak RM, Summerton J, Weller, Iversen PL. Antiproliferative effects of steric blocking phosphorodiamidate morpholino antisense agents directed against c-myc. Antisense Nucleic Acid Drug Dev. 2000;10:163–76.PubMedPubMedCentralCrossRefGoogle Scholar
  57. International Human Genome Sequenceing Consortium, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRefGoogle Scholar
  58. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Johnannsen W. The genotype conception of heredity. Am Nat. 1911;45:129.CrossRefGoogle Scholar
  60. July 28, 2017. How many organs could you lose and still live? BBC Focus Magazine – Science and Technology.Google Scholar
  61. Keeling KM, Wang D, Conard SE, Bedwell DM. Suppression of premature termination codons as a therapeutic approach. Crit Rev Biochem Mol Biol. 2012;47(5):444–63.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kim DU, Hayles J, Kim D, et al. Analysis of a genome-wide set of gene deletions in the fusion yeast Schizsaccharomyces pombe. Nat Biotechnol. 2010;28(6):617–23.  https://doi.org/10.1038/nbt1628.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Klein CJ, Coovert DD, Bulman PN, Ray PN, Mendel JR, Burghes AHM. Somatic reversion/suppressionin Duchenne muscular dystrophy (DMD): evidence supporting a frame-restoring mechanism in rare dystrophin-positive fibers. Am J Hum Genet. 1992;50:950–9.PubMedPubMedCentralGoogle Scholar
  64. Kogur M, Prizant E. Effects of dihydrostreptomycin on ribosome function in vivo: lack of correlation between changes in ribosome patterns and growth. Antimicrob Agents Chemother. 1974;7(3):341–8.Google Scholar
  65. Koonin EV, Gorbalenya AE, Chumakov KM. Tentative identification of RNA dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases. FEBS Lett. 1989;252(1–2):42–6.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kozak M. Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc Natl Acad Sci U S A. 1995;92:2662–6.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kralovicova J, Lages A, Patel A, Dhir A, Buratti E, Searle M, Vorechovsky I. Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex. Nucleic Acids Res. 2014;42:8161–73.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kramer EB, Farabaugh PJ. The frequency of translational misreading errors in E coli is largely determined by tRNA competition. RNA. 2007;13:87–96.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929–30.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kulis M, Merkel A, Heath S, Queiros AC, Schuyler RP, Castellano G, Beekman R, Raineri E, Esteve A. Whole genome fingerprint of the DNA methylome during B-cell differentiation. Nat Genet. 2015;47(7):746–56.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kume H, Hino K, Galipon J, Ui-Tei K. A-to-I editing in the miRNA seed region regulates target mRNA selection and silencing efficiency. Nucleic Acids Res. 2014;42:10050–60.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kunkel TA, Bebenek K. DNA replication fidelity. Annu Rev Biochem. 2000;69:497–529.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kurland CG, Ehrenberg M. Optimization of translation accuracy. Prog Nucleic Acid Res Mol Biol. 1984;31:191–219.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002;54:1271–94.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Laughrea M, Latulippe J, Filion AM, Boulet L. Mistranslation in twelve Escherichia coli ribosomal proteins. Cysteine misincorporation at neutral amino acid residues other than tryptophan. Eur J Biochem/FEBS. 1987;169:59–64.CrossRefGoogle Scholar
  76. Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015;84:291–323.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davidson MT, Sundberg JP, Schimmel P, Ackerman SL. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature. 2006;443:50–5.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Lewandowska MA. Review article-the missing puzzle piece: splicing mutations. Int J Clin Exp Pathol. 2013;6:2675–82.PubMedPubMedCentralGoogle Scholar
  79. Li G, Rice CM. The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. J Virol. 1993;67:5062–7.PubMedPubMedCentralGoogle Scholar
  80. Li GW. How do bacteria tune translational efficiency? Curr Opin Microbiol. 2015;24:66–71.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Li Y, Hamilton KJ, Lai AY, Burns KA, Li L, Wade PA, Korach KS. Diethylstilbesterol (DES)-stimulated hormonal toxicity is mediated by ERα alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle. Environ Health Perspect. 2014;122:262–8.PubMedPubMedCentralGoogle Scholar
  82. Lin YS, Dowling ALS, Quigley SD, Farin FM, Zhang J, Lamba J, Schuetz EG, Thummel KE. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharm. 2002;62:162–72.CrossRefGoogle Scholar
  83. Lister R, Mukamel EA, Nery JR, Utich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Tao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Longhran G, Chou MY, Ivanov IP, Jungreis I, Kellis M, Kiran AM, Baranov PV, Atkins JF. Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res. 2014;4:8928–38.CrossRefGoogle Scholar
  85. Love DR, Flint TJ, Genet SA, Middleton-Price HR, Daview KE. Becker muscular dystrophy patient with a large intragenic dystophin deletion: imnplications for functional minigenes and gene therapy. J Med Genet. 1991;28:860–4.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lu QL, Morris GE, Wilton SD, Ly T, Artem’yeva OV, Strong P, Partridge TA. Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion. J Cell Biol. 2000;48:985–96.CrossRefGoogle Scholar
  87. Ma W, Lin Y, Xuan W, Iversen PL, Smith LJ, Benchimol S. Inhibition of p53 expression by peptide-conjugted phosphorodiamidate morpholino oligomers sensitizes human cells to chemotherapeutic drugs. Oncogene. 2011:1–10. PMID 21765469Google Scholar
  88. Marcel V, Trran PLT, Sagne C, Martel-Planche G, Vasliin L, Teulade-Fichou MP, Hall J, Mergny JL, Hainaut P, Van Dyck E. G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis. 2011;32:271–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Matera AG, Tems RM, Tems MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol. 2007;8(3):209–20.PubMedCrossRefPubMedCentralGoogle Scholar
  90. McClorey G, Fall AM, Moulton HM, Iversen PL, Rasko JE, Ryan M, Fletcher S, Wilton SD. Induced dystrophin exon skipping in human muscle explants. Neuromuscul Disord. 2006a;16(9–10):583–90.PubMedCrossRefPubMedCentralGoogle Scholar
  91. McClorey G, Moulton HM, Iversen PL, Fletcher S, Wilton SD. Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther. 2006b;13(19):1373–81.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in the 3’-UTR and near stop codons. Cell. 2012;149(7):1635–46.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mirabella M, Galluzzi G, Manfredi G, Bertini E, Ricci E, Deleo R, Tonali P, Servidei S. Giant dystrophin deletion associated with congenital cataract and milder muscular dystrophy. Neurology. 1998;51:592–5.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Miyagoe-Suzuki Y, Nishiyama T, Nakamura M, Narita A, Takemura S, Minami N, Murayama K, Komaki H, Goto Y, Takeka S. Induction of pluripotent stem cells from a manifesting carrier of Duchenne muscular dystrophy and characterization of their X-inactivation status. Stem Cells Int. 2017;2017:1–9.Google Scholar
  95. Moser H, Emery AE. The manifesting carrier in Duchenne muscular dystrophy. Clin Genet. 1974;5(4):271–84.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Mourich DV, Iversen PL. Splicing in the immune system: potential targets for therapeutic intervention by antisense mediated alternative splicing. Curr Opin Mol Ther. 2009;11(2):124–32.PubMedPubMedCentralGoogle Scholar
  97. Mourich DV, Oda SK, Schnell FJ, Crumley SL, Hauck LL, Moentenich CA, Marshall NB, Hinrichs DJ, Iversen PL. Alternate Splice Forms of CTLA-4 Induced by Antisense Mediated Splice-Switching Influences Autoimmune Diabetes Susceptibility in NOD Mice. Nucleic Acid Ther. 2014;24:114–26.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Muller H. The remaking of chromosomes. The collecting net. Woods Hole. 1938;13:181–98.Google Scholar
  99. Munroe SH, Morales CH, Duyck TH, Waters PD. Evolution of the antisense overlap between genes for thyroid hormone receptor and rev-erba and characterization of an exonic F-rich element that regulates splicing of TRα2 mRNA. PLoS One. 2015;10(9):e0137893.  https://doi.org/10.1371/journal.pone.0137893.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Murugan R, Krieman G. Theory of the coupled stochastic dynamics of transcription and splice recognition. PLoS Comput Biol. 2012;8(11):e1002747. Doi:10.1371PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nangle LA, De Crecy LV, Doring V, Schimmel P. Genetic code ambiguity. Cell viability related to the severity of editing defects in mutant tRNA synthetases. J Biol Chem. 2002;277:45729–33.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Naylor JA, Green PM, Rizza CR, Giannelli F. Analysis of factor VIII mRNA defects in everyone of 28 hemophilia A patients. Hum Mol Genet. 1993;2:11–7.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nebbioso A, Carafa V, Benedetti R, Altucci L. Trials with ‘epigenetic’ drugs: an update. Mol Oncol. 2012;6:657–82.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nicholson LV, Johnson MA, Bushby KM, Gardger-Medwin D, Curtis A, Ginjaar IB, den Dunner JT, Welch JL, Butler TJ, Bakker E. Integrated study of 100 patients with Xp21 linked muscular dystrophy using clinical, genetic, immunochemical, and prognosis. J Med Genet. 1993a;20:745–51.CrossRefGoogle Scholar
  105. Nicholson LVB, Johnson MA, Bushby KMD, Gardner-Medwin D. Functional significance of dystrophin positive fibers in Duchenne muscular dystrophy. Arch Dis Child. 1993b;68:632–6.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Niedenthal RK, Riles L, Johnston M, Hegemann JII. Green fluorescent protein as a marker of gene expression and subcellular localization in budding yeast. Yeast. 1996;12:773–86.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Nightingale KP, O’Neill LP, Turner BM. Histone modifications: signaling receptors and potential elements of heritable epigenetic code. Curr Opin Genet Dev. 2006;16:125–36.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Nobel Prize in Physiology or Medicine 1962 to Crick, Watson and Wilkins.Google Scholar
  109. Nobel Prize in Physiology or Medicine 1968 to Holley, Khorana and Nirenberg.Google Scholar
  110. Nobel Prize in Physiology or Medicine 1993 to Richard Roberts and Phillip Sharp.Google Scholar
  111. Nobel Prize in Physiology or Medicine in 2006 for Andrew Fire and Craig Mello.Google Scholar
  112. Nobel Prize in Physiology or Medicine in 2009 for Elizabeth Blackburn, Carol Greider, and Jack Szostak.Google Scholar
  113. Norman A, Harper P. A survey of manifesting carriers of Duchenne and Becker muscular dystrophy in Whales. Clin Genet. 1989;36(1):31–7.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymatic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41:181–90.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Orlava M, Yueh A, Leung J, Goff SP. Reverse transcriptase on Moloney murine leukemia virus binds to eukaryotic release factor 1 to modulate suppression of translational termination. Cell. 2003;115:319–31.CrossRefGoogle Scholar
  116. Painter R, Osmond C, Gluckman P, Hanson M, Phillips D, Roseboom T. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115:1243–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Painter RC, de Rooij SR, Roseboom TJ, Bossuyt PMM, Simmers TA, Osmond C, et al. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr. 2006;84:322–7.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Panchal RG, Ulrich RL, Bradfute SB, Lane D, Ruthel G, Kenny TA, Iversen PL, Anderson AO, Gussio R, Raschke WC, Bavari S. Reduced expression of CD45 protein-tyrosine phosphatase provides protection against anthrax pathogenesis. J Biol Chem. 2009;284(19):12874–85.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal. 2007;9(7):775–806.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Park E, Guo J, Shen S, Demirdijian L, Wu YN, Lin L, Xing Y. Population and allelic variation of A-to-I RNA editing in human transcriptomes. Genome Biol. 2017;18:143–58.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Peltz SW, Morsy M, Welch EM, Jacobson A. Ataluren as an agent for therapeutic nonsense suppression. Annu Rev Med. 2013;64:407–25. doi:10.1146PubMedCrossRefPubMedCentralGoogle Scholar
  122. Pena SD, Karpati G, Carpenter S, Fraser FC. The clinical consequences of X-chromosome inactivation: Duchenne muscular dystrophy in one of monozygotic twins. J Neurol Sci. 1987;79(3):337–44.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Pfaffeneder T, Hackner B, Truss M, Munzel M, Muller M, Deiml CA, Hagemeier C, Carell T. The discovery of 5-Formylcytosine in embryonic stem cell DNA. Agnew Chem Int Ed. 2011;50(31):7008–12.CrossRefGoogle Scholar
  124. Prats H, Kaghad M, Prats AC, Klagsbrun M, Lelias JM, Liauzun P, Chalon P, Tauber JP, Amalric F, Smith JA, Caput D. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci U S A. 1989;86:1836–40.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Ratel D. N6-methyladenine: the other methylated base of DNA. BioEssays. 2006;28:309–15.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ravelli ACJ, Meulen JHP, Michels RPJ, Barker DJP, Blecker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70:811–6.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Ravelli ACJ, van der Meulen JHP, Michels RPJ, Osmond C, Barker DJP, Hales CN, et al. Glucose tolerance in adults after exposure to famine. Lancet. 1998;351:173–7.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Ribeiro MM, Teixeira GS, Martins L, Marques MR, de Souza AP, Line SRP. G-quadruplex formation enhances splicing efficiency of PAX9 intron 1. Hum Genet. 2015;134:37–44.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind VM, Marks PA. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A. 1998;95:3003–7.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rosenberger RF, Foskett G. An estimate of he frequency of in vivo transcriptional effors at a nonsense codon in Escherichia coli. Mol Gen Genet. 1981;183:561–3.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Rouleau SG, Beaudoin JD, Bisallon M, Perreault JP. Small antisense oligonucleotides against G-quadruplexes: specific mRNA translational switches. Nucleic Acids Res. 2015;43(1):595–606.PubMedCrossRefGoogle Scholar
  132. Rueter SM, Dawson TR, Emeson RB. Regulation of alternate splicing by RNA editing. Nature. 1999;399:75–80.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Saad F, Hotte S, North S, Eigl B, Chi K, Czaykowski P, Wood L, Pollak M, Berry S, Lattouf JB, Mukherjee SD, Gleave M, Winquist E. Randomized phase II trial of Clustrin (OGX-011) in combination with docetaxel or mitoxantrone s second-line therapy in patients with metastatic castrate-resistant prostate cancer progressing after first-line docetaxel: CUOG trial P-06c. Clin Cancer Res. 2011;17(17):5765–73.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Saey TH. Genetic escape artists resist disease. Science News. 2016, 14 May. RE: Chen R et al. Nature Biotechnology. 2016, April 11.Google Scholar
  135. Samatanga B, Dominguez C, Jelesarov I, Allain FHT. The high kinetic stability of a G-quadruplex limits hnRNP F qRRM3 binding to G-tract RNA. Nucleic Acids Res. 2013;41:2505–16.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Sharp PM, Stenico M, Peden JF, Lloyd AT. Codon usage: mutational bias, translational selection, or both? Biochem Soc Trans. 1993;21(4):835–41.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Shatkin A. Capping of eukaryotic mRNAs. Cell. 1976;9(4):645–53.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Shiozuka M, Wagatsuma A, Kawamoto T, Sasaki H, Shimada K, Takahashi Y, Nonomura Y, Matsuda R. Trasndermal delivery of a readthrough-inducing drug: a new approach of gentamicin administration for the treatment of nonsense mutation-mediated disorders. J Biochem. 2010;147:463–70.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Sicinski P, Geng Y, Ryder-Cook AS, Bernard EA, Darlison MG, Barnard PJ. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science. 1989;244:1578–9.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Sirand-Pugnet P, Durosay P, Brody E, Marie J. An intronic (A/U)GGG repeat enhances the splicing of an alternate intron of the chicken β-tropomycin pre-mRNA. Nucleic Acids Res. 1995;23:3501–7.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Siva K, Covello G, Denti MA. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases. Nucleic Acid Ther. 2014;24:69–86.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sommer B, Kohler M, Sprengel R, Seeburg PH. RNA editing in brain controls a determinant of ion flow in glutamate-gated ion channels. Cell. 1991;67:11–9.CrossRefGoogle Scholar
  143. Sonenberg N, Gringras AC. The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol. 1998;10(2):268–75.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Tahiliani M, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Tai PC, Wallace BJ, Davis BD. Streptomycin causes misreading of natural messenger by interacting with ribosomes after initiation. Proc Natl Acad Sci. 1978;75(1):275–9.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Takayama K, Matsuura A, Itakura E. Dissection of ubinquitinated protein degradation by basal autophagy. FEBS Lett. 2017;591:1199–211.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Teif V, Beshnova DA, Vainshtein Y, Marth C, Mallm JP, Hofer T, Rippe K. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res. 2014;24(8):1285–95.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Temin H, Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970;226(5252):1211–3.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats AC, Vagner S. Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biol Cell. 2003;95:169–78.PubMedCrossRefPubMedCentralGoogle Scholar
  151. True HL, Berlin I, Lindquist SL. Epigeneitic regulation of translation reveals hidden genetic variation to produce complex traits. Nature. 2004;431:184–7.PubMedCrossRefPubMedCentralGoogle Scholar
  152. True HL, Lindquist SL. A yeast prion provides aa mechanism for genetic vaiation and phenotypic diversity. Nature. 2000;407:477–83.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Uchino M, Tokunaga M, Mita S, Uyama E, Ando Y, Termoto H, Miike T, Ando M. PCR and immunochemical analysis of dystrophin-positive fibers in Duchenne muscular dystrophy. J Neurol Sci. 1995;129:44–50.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Von der Haar T, Tuite MF. Regulated translational bypass ofstop codons in yeast. Trends Microbiol. 2007;15:78–86.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Wang Z, et al. Cell. 2004;119:831–45.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Watson JD. Origin of concatameric T7 DNA. Nat New Biol. 1972;239:197–201.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Winnard AV, Klein CJ, Coovert DD, Prior T, Papp A, Snyder P, Bulman DE, Ray PN, McAndrew P, King W, et al. Characterization of translational frame exception patients in Duchenne/Becker uscular dystrophy. Hum Mol Genet. 1993;2:737–44.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Xiao X, Wang Z, Jang M, Nutiu R, Want ET, Bunge CB Splice site strength-dependent activity and genetic buffering by poly-G runs. Nat Struct Mol Biol 2009;16(10):1094–1100.CrossRefGoogle Scholar
  160. Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics. 2004;5:243–72.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Yoshida M, Kijma M, Akita M, Beppu T. Potent specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichosatain A. J Biol Chem. 1990;265:17174–9.PubMedPubMedCentralGoogle Scholar
  162. Zhang R, Lin Y. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res. 2009;37(database issue):D455–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Patrick L. Iversen
    • 1
  1. 1.LS PharmaOregon State UniversityGrand JctUSA

Personalised recommendations