Fine-Tuning the Stem Cell Fate by Autophagy

  • Shalmoli Bhattacharyya
  • Ajay Kumar
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


A constant balance is required between the anabolic and catabolic process to maintain cellular homeostasis. The cellular processing of cytoplasmic components by autophagy is the major pathway for intracellular degradation and recycling. Autophagy plays an important role in maintaining cellular homeostasis and tissue remodeling during normal development. Basal level of autophagy is prevalent in most tissues and it adds to the normal turnover of cytoplasmic components in the cell. Autophagy is also associated with health and longevity of dividing and differentiated cells. Dysregulation of autophagic pathways have been linked with the pathogenesis of diseases like cancer and various neurodegenerative disorders. The stem cells are a unique population of cells in the body having a high longevity and differentiation ability; hence autophagy is predicted to play a crucial role in maintenance of cellular homeostasis of these cells. Extensive information elucidating the function of autophagy in somatic cells is available but in contrast, the implication of autophagy in maintenance as well as differentiation of stem cells is being revealed recently. In this chapter, we discuss the recent updates in our knowledge of stem cell differentiation, quiescence, and the role of autophagy in their regulation.



Serine/threonine kinase 3


Acute promyelocytic leukemia


Autophagy-related gene


Basic fibroblast growth factor


Bone marrow-derived mesenchymal stem cells


Cancer stem cells


Epidermal growth factor


Embryonic stem cells


FAK-family interacting protein 200


Hepatocyte growth factor


Hematopoietic stem cells


Isobutyl methyl xanthine


Light chain 3


Mitogen-activated protein kinase


Oncostatin M


Platelet-derived growth factor


Phosphatidylinositol 3-kinase


Peroxisome proliferator activator receptor


Reactive oxygen species


Stem cell


Signal transducer and activator of transcription


  1. 1.
    Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells. 2008;26(3):638–45.CrossRefGoogle Scholar
  2. 2.
    Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol. 2001;238(1):120–32.CrossRefGoogle Scholar
  3. 3.
    Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome cues modulate the neurogenic potential of bone marrow and dental stem cells. Mol Neurobiol. 2017;54(6):4672–82.CrossRefGoogle Scholar
  4. 4.
    Kumar A, Kumar V, Rattan V, Jha V, Pal A, Bhattacharyya S. Molecular spectrum of secretome regulates the relative hepatogenic potential of mesenchymal stem cells from bone marrow and dental tissue. Sci Rep. 2017;7(1):15015.CrossRefPubMedGoogle Scholar
  5. 5.
    Bhattacharyya S, Kumar A, Lal Khanduja K. The voyage of stem cell toward terminal differentiation: a brief overview. Acta Biochim Biophys Sin (Shanghai). 2012;44(6):463–75.CrossRefGoogle Scholar
  6. 6.
    Pera MF, Tam PP. Extrinsic regulation of pluripotent stem cells. Nature. 2010;465(7299):713–20.CrossRefGoogle Scholar
  7. 7.
    Xiao Y, Peperzak V, van Rijn L, Borst J, de Bruijn JD. Dexamethasone treatment during the expansion phase maintains stemness of bone marrow mesenchymal stem cells. J Tissue Eng Regen Med. 2010;4(5):374–86.CrossRefGoogle Scholar
  8. 8.
    Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7(12):885–96.CrossRefGoogle Scholar
  9. 9.
    Scott MA, Nguyen VT, Levi B, James AW. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev. 2011;20(10):1793–804.CrossRefPubMedGoogle Scholar
  10. 10.
    Ailhaud G. Adipose cell differentiation in culture. Mol Cell Biochem. 1982;49(1):17–31.CrossRefGoogle Scholar
  11. 11.
    Qiu Z, Wei Y, Chen N, Jiang M, Wu J, Liao K. DNA synthesis and mitotic clonal expansion is not a required step for 3T3-L1 preadipocyte differentiation into adipocytes. J Biol Chem. 2001;276(15):11988–95.CrossRefGoogle Scholar
  12. 12.
    Janderova L, McNeil M, Murrell AN, Mynatt RL, Smith SR. Human mesenchymal stem cells as an in vitro model for human adipogenesis. Obes Res. 2003;11(1):65–74.CrossRefGoogle Scholar
  13. 13.
    Gurriaran-Rodriguez U, Al-Massadi O, Roca-Rivada A, Crujeiras AB, Gallego R, Pardo M, et al. Obestatin as a regulator of adipocyte metabolism and adipogenesis. J Cell Mol Med. 2011;15(9):1927–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim SP, Ha JM, Yun SJ, Kim EK, Chung SW, Hong KW, et al. Transcriptional activation of peroxisome proliferator-activated receptor-gamma requires activation of both protein kinase A and Akt during adipocyte differentiation. Biochem Biophys Res Commun. 2010;399(1):55–9.CrossRefGoogle Scholar
  15. 15.
    Glaser T, Brustle O. Retinoic acid induction of ES-cell-derived neurons: the radial glia connection. Trends Neurosci. 2005;28(8):397–400.CrossRefGoogle Scholar
  16. 16.
    Young JE, Martinez RA, La Spada AR. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem. 2009;284(4):2363–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Wobus AM, Grosse R, Schoneich J. Specific effects of nerve growth factor on the differentiation pattern of mouse embryonic stem cells in vitro. Biomed Biochim Acta. 1988;47(12):965–73.PubMedGoogle Scholar
  18. 18.
    Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci. 2015;72(8):1559–76.CrossRefGoogle Scholar
  19. 19.
    Ying QL, Smith AG. Defined conditions for neural commitment and differentiation. Methods Enzymol. 2003;365:327–41.CrossRefGoogle Scholar
  20. 20.
    Vollner F, Ernst W, Driemel O, Morsczeck C. A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation. 2009;77(5):433–41.CrossRefGoogle Scholar
  21. 21.
    Snykers S, De Kock J, Tamara V, Rogiers V. Hepatic differentiation of mesenchymal stem cells: in vitro strategies. Methods Mol Biol. 2011;698:305–14.CrossRefGoogle Scholar
  22. 22.
    Hu Z, Evarts RP, Fujio K, Marsden ER, Thorgeirsson SS. Expression of hepatocyte growth factor and c-met genes during hepatic differentiation and liver development in the rat. Am J Pathol. 1993;142(6):1823–30.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Kamiya A, Kinoshita T, Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett. 2001;492(1-2):90–4.CrossRefGoogle Scholar
  24. 24.
    Magner NL, Jung Y, Wu J, Nolta JA, Zern MA, Zhou P. Insulin and IGFs enhance hepatocyte differentiation from human embryonic stem cells via the PI3K/AKT pathway. Stem Cells. 2013;31(10):2095–103.CrossRefGoogle Scholar
  25. 25.
    He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.CrossRefPubMedGoogle Scholar
  26. 26.
    Phadwal K, Watson AS, Simon AK. Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci. 2013;70(1):89–103.CrossRefGoogle Scholar
  27. 27.
    Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, et al. Autophagy in stem cells. Autophagy. 2013;9(6):830–49.CrossRefPubMedGoogle Scholar
  28. 28.
    Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res. 2012;22(2):432–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC. Autophagic control of cell ‘stemness’. EMBO Mol Med. 2013;5(3):327–31.CrossRefPubMedGoogle Scholar
  30. 30.
    Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell. 2011;146(5):682–95.CrossRefPubMedGoogle Scholar
  31. 31.
    Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse. Cell Res. 2012;22(1):43–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529(7584):37–42.CrossRefGoogle Scholar
  33. 33.
    Ma Y, Qi M, An Y, Zhang L, Yang R, Doro DH, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell. 2017;17(1)CrossRefPubMedGoogle Scholar
  34. 34.
    Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep. 2014;8(5):1509–21.CrossRefPubMedGoogle Scholar
  35. 35.
    Liu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ, et al. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood. 2010;116(23):4806–14.CrossRefPubMedGoogle Scholar
  36. 36.
    Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med. 2011;208(3):455–67.CrossRefPubMedGoogle Scholar
  37. 37.
    Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077–82.CrossRefPubMedGoogle Scholar
  38. 38.
    Jin S. Autophagy, mitochondrial quality control, and oncogenesis. Autophagy. 2006;2(2):80–4.CrossRefGoogle Scholar
  39. 39.
    Revuelta M, Matheu A. Autophagy in stem cell aging. Aging Cell. 2017;16(5):912–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp Mol Med. 2012;44(2):73–80.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, et al. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev. 2012;21(8):1321–32.CrossRefPubMedGoogle Scholar
  42. 42.
    Oliver L, Hue E, Priault M, Vallette FM. Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev. 2012;21(15):2779–88.CrossRefPubMedGoogle Scholar
  43. 43.
    Vessoni AT, Muotri AR, Okamoto OK. Autophagy in stem cell maintenance and differentiation. Stem Cells Dev. 2012;21(4):513–20.CrossRefGoogle Scholar
  44. 44.
    Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest. 2009;119(11):3329–39.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Tsukamoto S, Kuma A, Mizushima N. The role of autophagy during the oocyte-to-embryo transition. Autophagy. 2008;4(8):1076–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Shalmoli Bhattacharyya
    • 1
  • Ajay Kumar
    • 1
  1. 1.Department of BiophysicsPGIMERChandigarhIndia

Personalised recommendations