Autophagy and Stem Cells

  • Kai Li
  • Zhuo YangEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Autophagy, as a highly conserved cellular process, can achieve the degradation and recycling of intracellular substances, and is crucial for maintaining cellular homeostasis and remodeling of normal development. Dysfunctions in autophagy would cause a variety of illnesses including cancer, inflammatory bowel disease and neurodegenerative diseases. The unique self-renewal ability and differentiation ability of stem cells can improve these diseases. Therefore, exploring the mechanism of autophagy in maintaining stem cell homeostasis is crucial. Here we review the mechanisms and regulation of autophagy in embryonic stem cells, hematopoietic stem cells, mesenchymal stem cells, neural stem cells, and cancer stem cells. It helps us understand the relationship between autophagy and stem cells. Although there are many unanswered questions, the study of autophagy and stem cell biology can help us to progress in life sciences.


Autophagy Stem cells Proliferation Differentiation Pluripotent 



Adult stem cells




Bone marrow MSCs


Chaperone-mediated autophagy


Embryonic stem cells


Hematopoietic stem cells


HSCs and progenitor cells


Induced pluripotent stem


Lysosomal-associated membrane protein 2


Mesenchymal stem cells


Neural stem cells


Reactive oxygen stress


Serum-deprived MSCs


Subgranular zone


Subventricular zone


  1. 1.
    Klionsky DJ. Autophagy revisited: a conversation with Christian de Duve. Autophagy. 2008;4(6):740–3.CrossRefPubMedGoogle Scholar
  2. 2.
    Kim KH, Lee MS. Autophagy--a key player in cellular and body metabolism. Nat Rev Endocrinol. 2014;10(6):322.CrossRefPubMedGoogle Scholar
  3. 3.
    Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Investig. 2005;115(10):2679–88.CrossRefPubMedGoogle Scholar
  4. 4.
    Komatsu M, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24(1):92–104.CrossRefPubMedGoogle Scholar
  6. 6.
    Galluzzi L, et al. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16(7):487.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang J, et al. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell Mol Life Sci. 2018;75:1803.CrossRefPubMedGoogle Scholar
  8. 8.
    Mizushima N, Yoshimori T, Ohsumi Y. The role of atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27(1):107.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ke B, et al. Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy. Med Res Rev. 2016;36(6):983–1035.CrossRefPubMedGoogle Scholar
  10. 10.
    Hosokawa N, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chang HJ, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992.CrossRefGoogle Scholar
  12. 12.
    Chang YY, Neufeld TP. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell. 2009;20(7):2004.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Itakura E, et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell. 2008;19(12):5360–72.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Di BS, et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol. 2011;191(1):155–68.Google Scholar
  15. 15.
    Axe EL, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182(4):685.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Polson HE, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010;6(4):506.CrossRefPubMedGoogle Scholar
  17. 17.
    Mizushima N, et al. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem. 1998;273(51):33889–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Mizushima N, et al. A protein conjugation system essential for autophagy. Nature. 1998;395(6700):395–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Kuma A, et al. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem. 2002;277(21):18619.CrossRefPubMedGoogle Scholar
  20. 20.
    Kabeya Y, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tanida I, et al. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein-phospholipid conjugates. J Biol Chem. 2004;279(35):36268–76.CrossRefPubMedGoogle Scholar
  22. 22.
    Ichimura Y, et al. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408(6811):488.CrossRefPubMedGoogle Scholar
  23. 23.
    Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–21.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yu L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465(7300):942–6.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shen R, et al. The function and regulation of BMP6 in various kinds of stem cells. Curr Pharm Des. 2015;21(25):3634–43.CrossRefPubMedGoogle Scholar
  26. 26.
    He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol. 2009;25(25):377.Google Scholar
  27. 27.
    Bongso A, Lee EH. Stem cells: their definition, classification and sources. Stem Cells. London: World Scientific Publishing Co. Pte. Ltd.; 1935. p. 1–13.Google Scholar
  28. 28.
    Dave M, et al. Mesenchymal stem cell therapy for inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2015;21(11):2696.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hsieh MM, et al. Allogeneic hematopoietic stem-cell transplantation for sickle cell disease. N Engl J Med. 2009;361(24):2309.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Laird DJ, Andrian UHV, Wagers AJ. Stem cell trafficking in tissue development, growth, and disease. Cell. 2008;132(4):612.CrossRefPubMedGoogle Scholar
  31. 31.
    Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci. 2000;113(Pt 1):5.Google Scholar
  32. 32.
    Pera MF, Dottori M. Stem cells and their developmental potential. Singapore: World Scientific Publishing; 2015. p. 55–70.Google Scholar
  33. 33.
    Guan JL, et al. Autophagy in stem cells. Autophagy. 2013;9(6):830–49.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.CrossRefGoogle Scholar
  35. 35.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bradley A, et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309(5965):255–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ross EA, Anderson N, Micklem HS. Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging. J Exp Med. 1982;155(2):432–44.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132(4):631.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kumaravelu P, et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development. 2002;129(21):4891.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Rhodes KE, et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell. 2008;2(3):252.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Majumdar MK, et al. Phenotypic and functional comparison of cultures of marrow‐derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998;176(1):57–66.CrossRefPubMedGoogle Scholar
  43. 43.
    Caplan AI. The mesengenic process. Clin Plast Surg. 1994;21(3):429.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011;12(2):126–31.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li W, et al. Autophagy is required for human umbilical cord mesenchymal stem cells to improve spatial working memory in APP/PS1 transgenic mouse model. Stem Cell Res Ther. 2018;9(1):9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maitra B, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant. 2004;33(6):597–604.CrossRefPubMedGoogle Scholar
  47. 47.
    Groszer M, et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci U S A. 2006;103(1):111–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Jackson EL, et al. PDGFRα-Positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron. 2006;51(2):187–99.CrossRefPubMedGoogle Scholar
  49. 49.
    Hermanson O, Jepsen K, Rosenfeld MG. N-CoR controls differentiation of neural stem cells into astrocytes. Nature. 2002;419(6910):934–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 2010;467(7313):323.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433.CrossRefPubMedGoogle Scholar
  52. 52.
    Phadwal K, Watson AS, Simon AK. Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci. 2013;70(1):89–103.CrossRefGoogle Scholar
  53. 53.
    Vessoni AT, Muotri AR, Okamoto OK. Autophagy in stem cell maintenance and differentiation. Stem Cells Dev. 2012;21(4):513–20.CrossRefGoogle Scholar
  54. 54.
    Tooze J, Davies HG. Cytolysomes in amphibian erythrocytes. J Cell Biol. 1965;24(1):146.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kent G, et al. Autophagic vacuoles in human red cells. Am J Pathol. 1966;48(48):831–57.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kundu M, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008;112(4):1493–502.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145.CrossRefPubMedGoogle Scholar
  58. 58.
    Chen Y, Klionsky DJ. The regulation of autophagy – unanswered questions. J Cell Sci. 2011;124(Pt 2):161–70.CrossRefPubMedGoogle Scholar
  59. 59.
    He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43(1):67.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mizushima N, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152(4):657–68.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Tsukamoto S, et al. Autophagy is essential for preimplantation development of mouse embryos. Science. 2008;321(5885):117–20.CrossRefPubMedGoogle Scholar
  62. 62.
    Wang S, et al. Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell. 2013;13(5):617.CrossRefPubMedGoogle Scholar
  63. 63.
    Mizushima N. Aβ generation in autophagic vacuoles. J Cell Biol. 2005;171(1):15.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cho YH, et al. Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells. 2014;32(2):424–35.CrossRefPubMedGoogle Scholar
  65. 65.
    Tra T, et al. Autophagy in human embryonic stem cells. PLoS One. 2011;6(11):e27485.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Qu X, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 2007;128(5):931–46.CrossRefPubMedGoogle Scholar
  67. 67.
    Saitoh T, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A. 2009;106(49):20842.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sou YS, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell. 2008;19(11):4762.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kuma A, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9):823.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Boya P, Codogno P, Rodriguez-Muela N. Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development. 2018;145(4):pii: dev146506.CrossRefGoogle Scholar
  72. 72.
    Yue Z, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077–82.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Chen S, et al. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model. Genes Dev. 2016;30(7):856–69.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kaizuka T, Mizushima N. Atg13 is essential for autophagy and cardiac development in mice. Mol Cell Biol. 2016;36(4):585–95.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kuo TC, et al. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol. 2011;13(10):1214–23.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Schink KO, et al. Cell differentiation: midbody remnants — junk or fate factors? Curr Biol. 2011;21(23):958–60.CrossRefGoogle Scholar
  77. 77.
    Isakson P, et al. TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy. Autophagy. 2013;9(12):1955.CrossRefPubMedGoogle Scholar
  78. 78.
    Mandell MA, et al. TRIM17 contributes to autophagy of midbodies while actively sparing other targets from degradation. J Cell Sci. 2016;129(19):3562.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Mortensen M, et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med. 2011;208(3):455.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Warr MR, et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature. 2013;494(7437):323–7.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Liu F, Guan JL. FIP200, an essential component of mammalian autophagy is indispensible for fetal hematopoiesis. Autophagy. 2011;7(2):229.CrossRefPubMedGoogle Scholar
  82. 82.
    Salemi S, et al. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res. 2012;22(2):432.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Liu F, et al. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood. 2010;116(23):4806.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kang Y, et al. Autophagy driven by a master regulator of hematopoiesis. Mol Cell Biol. 2012;32(1):226–39.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Iwama A, et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity. 2004;21(6):843.CrossRefPubMedGoogle Scholar
  86. 86.
    Park IK, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423(6937):302.CrossRefPubMedGoogle Scholar
  87. 87.
    Yahata T, et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood. 2011;118(11):2941.CrossRefPubMedGoogle Scholar
  88. 88.
    Joshi A, Kundu M. Mitophagy in hematopoietic stem cells: the case for exploration. Autophagy. 2013;9(11):1737.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Chong C, et al. TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med. 2008;205(10):2397.CrossRefGoogle Scholar
  90. 90.
    Chen C, et al. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2(98):ra75.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Mortensen M, et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Autophagy. 2010;107(3):832–7.Google Scholar
  92. 92.
    Yan C, et al. ROS functions as an upstream trigger for autophagy to drive hematopoietic stem cell differentiation. Hematology. 2016;21(10):1.Google Scholar
  93. 93.
    Cao Y, et al. Autophagy sustains hematopoiesis through targeting notch. Stem Cells Dev. 2015;24(22):2660.CrossRefPubMedGoogle Scholar
  94. 94.
    Cao Y, et al. Hierarchal autophagic divergence of hematopoietic system. J Biol Chem. 2015;290(38):23050–63.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Yuan X, et al. Mitochondrial apoptosis and autophagy in the process of adipose‐derived stromal cell differentiation into astrocytes. Cell Biol Int. 2016;40(2):156–65.CrossRefPubMedGoogle Scholar
  96. 96.
    Denis JA, et al. mTOR-dependent proliferation defect in human ES-derived neural stem cells affected by myotonic dystrophy type 1. J Cell Sci. 2013;126(8):1763–72.CrossRefPubMedGoogle Scholar
  97. 97.
    Shang YC, et al. Prevention of β-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging. 2012;4(3):187–201.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Walls KC, et al. Lysosome dysfunction triggers Atg7-dependent neural apoptosis. J Biol Chem. 2010;285(14):10497–507.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Jiao Q. et al. [An overview on autophagy in neural stem cells]. Sheng li xue bao : [Acta Physiologica Sinica]. 2016; 68(5): 649.Google Scholar
  100. 100.
    Zeng M, Zhou JN. Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal. 2008;20(4):659.CrossRefPubMedGoogle Scholar
  101. 101.
    Li M, et al. EVA1A/TMEM166 regulates embryonic neurogenesis by autophagy. Stem Cell Rep. 2016;6(3):396–410.CrossRefGoogle Scholar
  102. 102.
    Vázquez P, et al. Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy. 2012;8(2):187.CrossRefPubMedGoogle Scholar
  103. 103.
    Belle JEL, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell. 2011;8(1):59.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Han X, et al. AMPKactivation protects cells from oxidative stress‐induced senescence via autophagic flux restoration and intracellularNAD+elevation. Aging Cell. 2016;15(3):416–27.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Wang C, et al. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci. 2013;16(5):532.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Zhu L, et al. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy. Biochem Biophys Res Commun. 2015;464(2):526–33.CrossRefPubMedGoogle Scholar
  107. 107.
    Chuikov S, et al. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat Cell Biol. 2010;12(10):999.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Paik J, et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell. 2009;5(5):540–53.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Molaei S, et al. Down-regulation of the autophagy gene, ATG7, protects bone marrow-derived mesenchymal stem cells from stressful conditions. Blood Res. 2015;50(2):80–6.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Oliver L, et al. Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev. 2012;21(15):2779.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Li B, et al. Role of autophagy on bone marrow mesenchymal stem‑cell proliferation and differentiation into neurons. Mol Med Rep. 2016;13(2):1413–9.CrossRefPubMedGoogle Scholar
  112. 112.
    Wan Y, et al. Autophagy promotes osteogenic differentiation of human bone marrow mesenchymal stem cell derived from osteoporotic vertebrae. Biochem Biophys Res Commun. 2017;488:46.CrossRefPubMedGoogle Scholar
  113. 113.
    Karch J, et al. Autophagic cell death is dependent on lysosomal membrane permeability through Bax and Bak. Elife. 2017;6:e30543.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Musumeci G, et al. Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis. Int J Mol Sci. 2015;16(9):20560–75.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Zhang Q, et al. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev. 2012;21(8):1321.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Sanchez CG, et al. Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis. 2011;32(7):964–72.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.CrossRefGoogle Scholar
  118. 118.
    Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21(3):283–96.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Visvader J, Lindeman G. cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717.CrossRefPubMedGoogle Scholar
  120. 120.
    Gong C, et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Autophagy. 2012;8(12):1853–5.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Liang XH, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672.CrossRefPubMedGoogle Scholar
  122. 122.
    Espina V, et al. Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One. 2010;5(4):e10240.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Maycotte P, et al. Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion. Mol Cancer Res. 2015;13(4):651.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Cufã SL, et al. Autophagy positively regulates the CD44+CD24-/low breast cancer stem-like phenotype. Cell Cycle. 2011;10(22):3871–85.CrossRefGoogle Scholar
  125. 125.
    Galluzzi L, et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34(7):856–80.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Yue W, et al. ESC-derived basal forebrain cholinergic neurons ameliorate the cognitive symptoms associated with Alzheimer’s disease in mouse models. Stem Cell Rep. 2015;5(5):776.CrossRefGoogle Scholar
  127. 127.
    Wu QY, et al. Bone marrow stromal cells of transgenic mice can improve the cognitive ability of an Alzheimer’s disease rat model. Neurosci Lett. 2007;417(3):281–5.CrossRefPubMedGoogle Scholar
  128. 128.
    Hargus G, et al. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol. 2014;127(2):151.CrossRefPubMedGoogle Scholar
  129. 129.
    Dalby KN, et al. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 2010;6(3):322–9.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Buchser WJ, et al. Cell-mediated autophagy promotes cancer cell survival. Cancer Res. 2012;72(12):2970–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.College of Medicine, State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina

Personalised recommendations