Advertisement

The Role of Mast Cells in the Pathophysiology of Pulmonary Fibrosis

  • Chiko Shimbori
  • Chandak Upagupta
  • Paul Forsythe
  • Martin Kolb
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal disease of unknown cause. It is characterized by an accumulation of fibroblasts and myofibroblasts and extensive deposition of extracellular matrix (ECM) proteins. The microenvironment of the fibrotic ECM is characterized by altered biomechanical (stiffness) as well as altered biochemical (growth factors) properties. The ECM can also affect the behavior of multiple lung cell types, including mesenchymal cells, macrophages, and mast cells. Mast cells have been seen to accumulate within the fibrotic regions of lungs with IPF. Furthermore, in both IPF and experimental pulmonary fibrosis models, correlations between the number of mast cells and fibrosis have been reported. Mast cells contain many profibrotic mediators, such as tryptase, chymase, histamine, and TGF-β1. These mediators have been seen to activate fibroblasts and myofibroblasts. More recent studies have highlighted the role of fibrotic ECM in influencing mast cell characteristic and function. However, mast cells have not been investigated as extensively as other cells, and their role in the progression of pulmonary fibrosis has not been pursued. In this chapter, we will discuss mast cells and their pathophysiological role in pulmonary fibrosis, including IPF, and propose a new possible target for the IPF treatment.

Keywords

Mast cell Extracellular matrix (ECM) Fibrosis Fibroblasts Myofibroblasts Heterogeneity Chymase Tryptase TGF-β 

References

  1. 1.
    King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.  https://doi.org/10.1056/NEJMoa1402582.CrossRefPubMedGoogle Scholar
  2. 2.
    Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82.  https://doi.org/10.1056/NEJMoa1402584.CrossRefPubMedGoogle Scholar
  3. 3.
    Raghu G, Selman M. Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions. Am J Respir Crit Care Med. 2015;191(3):252–4.  https://doi.org/10.1164/rccm.201411-2044ED.CrossRefPubMedGoogle Scholar
  4. 4.
    Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol. 2014;9:157–79. Epub 2013/09/13.  https://doi.org/10.1146/annurev-pathol-012513-104706.CrossRefPubMedGoogle Scholar
  5. 5.
    Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200(4):500–3.  https://doi.org/10.1002/path.1427.CrossRefPubMedGoogle Scholar
  6. 6.
    Marinković A, Liu F, Tschumperlin DJ. Matrices of physiologic stiffness potently inactivate idiopathic pulmonary fibrosis fibroblasts. Am J Respir Cell Mol Biol. 2013;48(4):422–30.  https://doi.org/10.1165/rcmb.2012-0335OC.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Martinez FJ, Flaherty K. Pulmonary function testing in idiopathic interstitial pneumonias. Proc Am Thorac Soc. 2006;3(4):315–21.  https://doi.org/10.1513/pats.200602-022TK.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carloni A, Poletti V, Fermo L, Bellomo N, Chilosi M. Heterogeneous distribution of mechanical stress in human lung: a mathematical approach to evaluate abnormal remodeling in IPF. J Theor Biol. 2013;332:136–40. Epub 2013/05/09.  https://doi.org/10.1016/j.jtbi.2013.04.038.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190(4):693–706.  https://doi.org/10.1083/jcb.201004082.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shimbori C, Gauldie J, Kolb M. Extracellular matrix microenvironment contributes actively to pulmonary fibrosis. Curr Opin Pulm Med. 2013;19(5):446–52.  https://doi.org/10.1097/MCP.0b013e328363f4de.CrossRefPubMedGoogle Scholar
  11. 11.
    Kottmann RM, Sharp J, Owens K, Salzman P, Xiao GQ, Phipps RP, et al. Second harmonic generation microscopy reveals altered collagen microstructure in usual interstitial pneumonia versus healthy lung. Respir Res. 2015;16:61. Epub 2015/05/27.  https://doi.org/10.1186/s12931-015-0220-8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Froese AR, Shimbori C, Bellaye PS, Inman M, Obex S, Fatima S, et al. Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. Am J Respir Crit Care Med. 2016;194(1):84–96.  https://doi.org/10.1164/rccm.201508-1638OC.CrossRefPubMedGoogle Scholar
  13. 13.
    Eisenberg JL, Safi A, Wei X, Espinosa HD, Budinger GS, Takawira D, et al. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells. Res Rep Biol. 2011;2011(2):1–12.  https://doi.org/10.2147/RRB.S13178.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Balestrini JL, Chaudhry S, Sarrazy V, Koehler A, Hinz B. The mechanical memory of lung myofibroblasts. Integr Biol (Camb). 2012;4(4):410–21. Epub 2012/03/13.  https://doi.org/10.1039/c2ib00149g.CrossRefGoogle Scholar
  15. 15.
    Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell. 2012;23(5):781–91.  https://doi.org/10.1091/mbc.E11-06-0537.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Booth AJ, Hadley R, Cornett AM, Dreffs AA, Matthes SA, Tsui JL, et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med. 2012;186(9):866–76.  https://doi.org/10.1164/rccm.201204-0754OC.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kitamura Y, Yokoyama M, Matsuda H, Ohno T, Mori KJ. Spleen colony-forming cell as common precursor for tissue mast cells and granulocytes. Nature. 1981;291(5811):159–60.CrossRefGoogle Scholar
  18. 18.
    Overed-Sayer C, Rapley L, Mustelin T, Clarke DL. Are mast cells instrumental for fibrotic diseases? Front Pharmacol. 2013;4:174.  https://doi.org/10.3389/fphar.2013.00174.CrossRefPubMedGoogle Scholar
  19. 19.
    Virk H, Arthur G, Bradding P. Mast cells and their activation in lung disease. Transl Res. 2016;174:60–76. Epub 2016/01/20.  https://doi.org/10.1016/j.trsl.2016.01.005.CrossRefPubMedGoogle Scholar
  20. 20.
    Cruse G, Bradding P. Mast cells in airway diseases and interstitial lung disease. Eur J Pharmacol. 2016;778:125–38. Epub 2015/05/08.  https://doi.org/10.1016/j.ejphar.2015.04.046.CrossRefPubMedGoogle Scholar
  21. 21.
    Douaiher J, Succar J, Lancerotto L, Gurish MF, Orgill DP, Hamilton MJ, et al. Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing. Adv Immunol. 2014;122:211–52.  https://doi.org/10.1016/B978-0-12-800267-4.00006-7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gurish MF, Austen KF. Developmental origin and functional specialization of mast cell subsets. Immunity. 2012;37(1):25–33.  https://doi.org/10.1016/j.immuni.2012.07.003.CrossRefPubMedGoogle Scholar
  23. 23.
    Moon TC, St Laurent CD, Morris KE, Marcet C, Yoshimura T, Sekar Y, et al. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol. 2010;3(2):111–28. Epub 2009/12/30.  https://doi.org/10.1038/mi.2009.136.CrossRefPubMedGoogle Scholar
  24. 24.
    Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol. 2005;6(2):135–42.  https://doi.org/10.1038/ni1158.CrossRefPubMedGoogle Scholar
  25. 25.
    Boyce JA. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev. 2007;217:168–85.  https://doi.org/10.1111/j.1600-065X.2007.00512.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Abraham SN, St John AL. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol. 2010;10(6):440–52.  https://doi.org/10.1038/nri2782.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011;12(11):1035–44. Epub 2011/10/19.  https://doi.org/10.1038/ni.2109.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hallgren J, Gurish MF. Pathways of murine mast cell development and trafficking: tracking the roots and routes of the mast cell. Immunol Rev. 2007;217:8–18.  https://doi.org/10.1111/j.1600-065X.2007.00502.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Hallgren J, Gurish MF. Mast cell progenitor trafficking and maturation. Adv Exp Med Biol. 2011;716:14–28.  https://doi.org/10.1007/978-1-4419-9533-9_2.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Collington SJ, Williams TJ, Weller CL. Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol. 2011;32(10):478–85. Epub 2011/09/13.  https://doi.org/10.1016/j.it.2011.08.002.CrossRefPubMedGoogle Scholar
  31. 31.
    Wernersson S, Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014;14(7):478–94. Epub 2014/06/06.  https://doi.org/10.1038/nri3690.CrossRefPubMedGoogle Scholar
  32. 32.
    Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M. Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol. 2005;23:749–86.  https://doi.org/10.1146/annurev.immunol.21.120601.141025.CrossRefPubMedGoogle Scholar
  33. 33.
    Kitamura Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu Rev Immunol. 1989;7:59–76.  https://doi.org/10.1146/annurev.iy.07.040189.000423.CrossRefPubMedGoogle Scholar
  34. 34.
    Graham AC, Temple RM, Obar JJ. Mast cells and influenza a virus: association with allergic responses and beyond. Front Immunol. 2015;6:238. Epub 2015/05/18.  https://doi.org/10.3389/fimmu.2015.00238.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol. 2015;126:45–127. Epub 2015/02/07.  https://doi.org/10.1016/bs.ai.2014.11.002.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Burwen SJ. Recycling of mast cells following degranulation in vitro: an ultrastructural study. Tissue Cell. 1982;14(1):125–34.CrossRefGoogle Scholar
  37. 37.
    Moulin V, Castilloux G, Auger FA, Garrel D, O’Connor-McCourt MD, Germain L. Modulated response to cytokines of human wound healing myofibroblasts compared to dermal fibroblasts. Exp Cell Res. 1998;238(1):283–93.  https://doi.org/10.1006/excr.1997.3827.CrossRefPubMedGoogle Scholar
  38. 38.
    Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol. 2007;170(6):1807–16.  https://doi.org/10.2353/ajpath.2007.070112.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Levi-Schaffer F, Rubinchik E. Activated mast cells are fibrogenic for 3T3 fibroblasts. J Invest Dermatol. 1995;104(6):999–1003.CrossRefGoogle Scholar
  40. 40.
    Gailit J, Marchese MJ, Kew RR, Gruber BL. The differentiation and function of myofibroblasts is regulated by mast cell mediators. J Invest Dermatol. 2001;117(5):1113–9.  https://doi.org/10.1046/j.1523-1747.2001.15211.x.CrossRefPubMedGoogle Scholar
  41. 41.
    Kupietzky A, Levi-Schaffer F. The role of mast cell-derived histamine in the closure of an in vitro wound. Inflamm Res. 1996;45(4):176–80.CrossRefGoogle Scholar
  42. 42.
    Garbuzenko E, Berkman N, Puxeddu I, Kramer M, Nagler A, Levi-Schaffer F. Mast cells induce activation of human lung fibroblasts in vitro. Exp Lung Res. 2004;30(8):705–21.CrossRefGoogle Scholar
  43. 43.
    Wygrecka M, Dahal BK, Kosanovic D, Petersen F, Taborski B, von Gerlach S, et al. Mast cells and fibroblasts work in concert to aggravate pulmonary fibrosis: role of transmembrane SCF and the PAR-2/PKC-α/Raf-1/p44/42 signaling pathway. Am J Pathol. 2013;182(6):2094–108.  https://doi.org/10.1016/j.ajpath.2013.02.013.CrossRefPubMedGoogle Scholar
  44. 44.
    Veerappan A, O’Connor NJ, Brazin J, Reid AC, Jung A, McGee D, et al. Mast cells: a pivotal role in pulmonary fibrosis. DNA Cell Biol. 2013;32(4):206–18.  https://doi.org/10.1089/dna.2013.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hirata K, Sugama Y, Ikura Y, Ohsawa M, Inoue Y, Yamamoto S, et al. Enhanced mast cell chymase expression in human idiopathic interstitial pneumonia. Int J Mol Med. 2007;19(4):565–70.PubMedGoogle Scholar
  46. 46.
    Dayton ET, Pharr P, Ogawa M, Serafin WE, Austen KF, Levi-Schaffer F, et al. 3T3 fibroblasts induce cloned interleukin 3-dependent mouse mast cells to resemble connective tissue mast cells in granular constituency. Proc Natl Acad Sci U S A. 1988;85(2):569–72.CrossRefGoogle Scholar
  47. 47.
    Rubinchik E, Levi-Schaffer F. Mast cells and fibroblasts: two interacting cells. Int J Clin Lab Res. 1994;24(3):139–42.CrossRefGoogle Scholar
  48. 48.
    Fireman E, Kivity S, Shahar I, Reshef T, Mekori YA. Secretion of stem cell factor by alveolar fibroblasts in interstitial lung diseases. Immunol Lett. 1999;67(3):229–36.CrossRefGoogle Scholar
  49. 49.
    Yamamoto T, Hartmann K, Eckes B, Krieg T. Role of stem cell factor and monocyte chemoattractant protein-1 in the interaction between fibroblasts and mast cells in fibrosis. J Dermatol Sci. 2001;26(2):106–11.CrossRefGoogle Scholar
  50. 50.
    Nguyen T, Shapiro DA, George SR, Setola V, Lee DK, Cheng R, et al. Discovery of a novel member of the histamine receptor family. Mol Pharmacol. 2001;59(3):427–33.CrossRefGoogle Scholar
  51. 51.
    Norrby K. Mast cell histamine, a local mitogen acting via H2-receptors in nearby tissue cells. Virchows Arch B Cell Pathol Incl Mol Pathol. 1980;34(1):13–20.CrossRefGoogle Scholar
  52. 52.
    Jordana M, Befus AD, Newhouse MT, Bienenstock J, Gauldie J. Effect of histamine on proliferation of normal human adult lung fibroblasts. Thorax. 1988;43(7):552–8.CrossRefGoogle Scholar
  53. 53.
    Garbuzenko E, Nagler A, Pickholtz D, Gillery P, Reich R, Maquart FX, et al. Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis. Clin Exp Allergy. 2002;32(2):237–46.CrossRefGoogle Scholar
  54. 54.
    Kohyama T, Yamauchi Y, Takizawa H, Kamitani S, Kawasaki S, Nagase T. Histamine stimulates human lung fibroblast migration. Mol Cell Biochem. 2010;337(1–2):77–81. Epub 2009/10/23.  https://doi.org/10.1007/s11010-009-0287-y.CrossRefPubMedGoogle Scholar
  55. 55.
    Lucarini L, Pini A, Rosa AC, Lanzi C, Durante M, Chazot PL, et al. Role of histamine H4 receptor ligands in bleomycin-induced pulmonary fibrosis. Pharmacol Res. 2016;111:740–8. Epub 2016/07/27.  https://doi.org/10.1016/j.phrs.2016.07.037.CrossRefPubMedGoogle Scholar
  56. 56.
    Cairns JA, Walls AF. Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. J Clin Invest. 1997;99(6):1313–21.  https://doi.org/10.1172/JCI119290.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Levi-Schaffer F, Piliponsky AM. Tryptase, a novel link between allergic inflammation and fibrosis. Trends Immunol. 2003;24(4):158–61.CrossRefGoogle Scholar
  58. 58.
    Akers IA, Parsons M, Hill MR, Hollenberg MD, Sanjar S, Laurent GJ, et al. Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol. 2000;278(1):L193–201.CrossRefGoogle Scholar
  59. 59.
    Kawatani K, Kondo M, Tamaoki J, Tagaya E, Nagai A. The clinical significance of mast cell tryptase in bronchial alveolar lavage fluid in interstitial lung diseases. Nihon Kokyuki Gakkai Zasshi. 2007;45(11):848–55.PubMedGoogle Scholar
  60. 60.
    Andersson CK, Andersson-Sjöland A, Mori M, Hallgren O, Pardo A, Eriksson L, et al. Activated MCTC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis. Respir Res. 2011;12:139.  https://doi.org/10.1186/1465-9921-12-139.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wygrecka M, Kwapiszewska G, Jablonska E, von Gerlach S, Henneke I, Zakrzewicz D, et al. Role of protease-activated receptor-2 in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(12):1703–14. Epub 2011/03/11.  https://doi.org/10.1164/rccm.201009-1479OC.CrossRefPubMedGoogle Scholar
  62. 62.
    Lin C, von der Thüsen J, Daalhuisen J, ten Brink M, Crestani B, van der Poll T, et al. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis. J Cell Mol Med. 2015;19(6):1346–56. Epub 2015/02/16.  https://doi.org/10.1111/jcmm.12520.CrossRefGoogle Scholar
  63. 63.
    Su X, Matthay MA. Role of protease activated receptor 2 in experimental acute lung injury and lung fibrosis. Anat Rec (Hoboken). 2009;292(4):580–6.  https://doi.org/10.1002/ar.20846.CrossRefGoogle Scholar
  64. 64.
    Kofford MW, Schwartz LB, Schechter NM, Yager DR, Diegelmann RF, Graham MF. Cleavage of type I procollagen by human mast cell chymase initiates collagen fibril formation and generates a unique carboxyl-terminal propeptide. J Biol Chem. 1997;272(11):7127–31.CrossRefGoogle Scholar
  65. 65.
    Orito K, Suzuki Y, Matsuda H, Shirai M, Akahori F. Chymase is activated in the pulmonary inflammation and fibrosis induced by paraquat in hamsters. Tohoku J Exp Med. 2004;203(4):287–94.CrossRefGoogle Scholar
  66. 66.
    Kosanovic D, Luitel H, Dahal BK, Cornitescu T, Janssen W, Danser AH, et al. Chymase: a multifunctional player in pulmonary hypertension associated with lung fibrosis. Eur Respir J. 2015;46(4):1084–94. Epub 2015/06/25.  https://doi.org/10.1183/09031936.00018215.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhao XY, Zhao LY, Zheng QS, Su JL, Guan H, Shang FJ, et al. Chymase induces profibrotic response via transforming growth factor-beta 1/Smad activation in rat cardiac fibroblasts. Mol Cell Biochem. 2008;310(1–2):159–66.  https://doi.org/10.1007/s11010-007-9676-2.CrossRefPubMedGoogle Scholar
  68. 68.
    Takato H, Yasui M, Ichikawa Y, Waseda Y, Inuzuka K, Nishizawa Y, et al. The specific chymase inhibitor TY-51469 suppresses the accumulation of neutrophils in the lung and reduces silica-induced pulmonary fibrosis in mice. Exp Lung Res. 2011;37(2):101–8.  https://doi.org/10.3109/01902148.2010.520815.CrossRefPubMedGoogle Scholar
  69. 69.
    Tomimori Y, Muto T, Saito K, Tanaka T, Maruoka H, Sumida M, et al. Involvement of mast cell chymase in bleomycin-induced pulmonary fibrosis in mice. Eur J Pharmacol. 2003;478(2–3):179–85.CrossRefGoogle Scholar
  70. 70.
    Sakaguchi M, Takai S, Jin D, Okamoto Y, Muramatsu M, Kim S, et al. A specific chymase inhibitor, NK3201, suppresses bleomycin-induced pulmonary fibrosis in hamsters. Eur J Pharmacol. 2004;493(1–3):173–6.  https://doi.org/10.1016/j.ejphar.2004.04.024.CrossRefPubMedGoogle Scholar
  71. 71.
    Doggrell SA, Wanstall JC. Vascular chymase: pathophysiological role and therapeutic potential of inhibition. Cardiovasc Res. 2004;61(4):653–62.  https://doi.org/10.1016/j.cardiores.2003.11.029.CrossRefPubMedGoogle Scholar
  72. 72.
    Uhal BD, Li X, Piasecki CC, Molina-Molina M. Angiotensin signalling in pulmonary fibrosis. Int J Biochem Cell Biol. 2012;44(3):465–8. Epub 2011/11/30.  https://doi.org/10.1016/j.biocel.2011.11.019.CrossRefPubMedGoogle Scholar
  73. 73.
    Lang YD, Chang SF, Wang LF, Chen CM. Chymase mediates paraquat-induced collagen production in human lung fibroblasts. Toxicol Lett. 2010;193(1):19–25. Epub 2009/12/05.  https://doi.org/10.1016/j.toxlet.2009.12.001.CrossRefPubMedGoogle Scholar
  74. 74.
    Kosanovic D, Dahal BK, Wygrecka M, Reiss I, Günther A, Ghofrani HA, et al. Mast cell chymase: an indispensable instrument in the pathological symphony of idiopathic pulmonary fibrosis? Histol Histopathol. 2013;28(6):691–9. Epub 2013/02/25.  https://doi.org/10.14670/HH-28.691.CrossRefPubMedGoogle Scholar
  75. 75.
    Fernandez IE, Eickelberg O. The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc. 2012;9(3):111–6.  https://doi.org/10.1513/pats.201203-023AW.CrossRefPubMedGoogle Scholar
  76. 76.
    Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest. 1997;100(4):768–76.  https://doi.org/10.1172/JCI119590.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M, et al. Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol. 2004;173(3):2099–108.CrossRefGoogle Scholar
  78. 78.
    Maharaj S, Shimbori C, Kolb M. Fibrocytes in pulmonary fibrosis: a brief synopsis. Eur Respir Rev. 2013;22(130):552–7.  https://doi.org/10.1183/09059180.00007713.CrossRefPubMedGoogle Scholar
  79. 79.
    Gong D, Shi W, Yi SJ, Chen H, Groffen J, Heisterkamp N. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13:31. Epub 2012/06/15.  https://doi.org/10.1186/1471-2172-13-31.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Flechsig P, Dadrich M, Bickelhaupt S, Jenne J, Hauser K, Timke C, et al. LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP-associated proinflammatory and proangiogenic signals. Clin Cancer Res. 2012;18(13):3616–27. Epub 2012/04/30.  https://doi.org/10.1158/1078-0432.CCR-11-2855.CrossRefPubMedGoogle Scholar
  81. 81.
    Leppäranta O, Sens C, Salmenkivi K, Kinnula VL, Keski-Oja J, Myllärniemi M, et al. Regulation of TGF-β storage and activation in the human idiopathic pulmonary fibrosis lung. Cell Tissue Res. 2012;348(3):491–503. Epub 2012/03/22.  https://doi.org/10.1007/s00441-012-1385-9.CrossRefPubMedGoogle Scholar
  82. 82.
    Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179(6):1311–23.  https://doi.org/10.1083/jcb.200704042.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors. 2011;29(5):196–202. Epub 2011/07/11.  https://doi.org/10.3109/08977194.2011.595714.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Hayashi H, Sakai T. Biological significance of local TGF-β activation in liver diseases. Front Physiol. 2012;3:12. Epub 2012/02/06.  https://doi.org/10.3389/fphys.2012.00012.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Lindstedt KA, Wang Y, Shiota N, Saarinen J, Hyytiäinen M, Kokkonen JO, et al. Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase. FASEB J. 2001;15(8):1377–88.CrossRefGoogle Scholar
  86. 86.
    Takai S, Jin D, Sakaguchi M, Katayama S, Muramatsu M, Matsumura E, et al. A novel chymase inhibitor, 4-[1-([bis-(4-methyl-phenyl)-methyl]-carbamoyl)3-(2-ethoxy-benzyl)-4-oxo-azetidine-2-yloxy]-benzoic acid (BCEAB), suppressed cardiac fibrosis in cardiomyopathic hamsters. J Pharmacol Exp Ther. 2003;305(1):17–23.  https://doi.org/10.1124/jpet.102.045179.CrossRefPubMedGoogle Scholar
  87. 87.
    Chaudhary NI, Roth GJ, Hilberg F, Müller-Quernheim J, Prasse A, Zissel G, et al. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur Respir J. 2007;29(5):976–85. Epub 2007/02/14.  https://doi.org/10.1183/09031936.00152106.CrossRefPubMedGoogle Scholar
  88. 88.
    Qu Z, Liebler JM, Powers MR, Galey T, Ahmadi P, Huang XN, et al. Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol. 1995;147(3):564–73.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Khalil N, Xu YD, O’Connor R, Duronio V. Proliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-beta1-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK. J Biol Chem. 2005;280(52):43000–9. Epub 2005/10/24.  https://doi.org/10.1074/jbc.M510441200.CrossRefPubMedGoogle Scholar
  90. 90.
    Svystonyuk DA, Ngu JM, Mewhort HE, Lipon BD, Teng G, Guzzardi DG, et al. Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling. J Transl Med. 2015;13:147. Epub 2015/05/07.  https://doi.org/10.1186/s12967-015-0510-4.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Thannickal VJ, Aldweib KD, Rajan T, Fanburg BL. Upregulated expression of fibroblast growth factor (FGF) receptors by transforming growth factor-beta1 (TGF-beta1) mediates enhanced mitogenic responses to FGFs in cultured human lung fibroblasts. Biochem Biophys Res Commun. 1998;251(2):437–41.  https://doi.org/10.1006/bbrc.1998.9443.CrossRefPubMedGoogle Scholar
  92. 92.
    Finlay GA, Thannickal VJ, Fanburg BL, Paulson KE. Transforming growth factor-beta 1-induced activation of the ERK pathway/activator protein-1 in human lung fibroblasts requires the autocrine induction of basic fibroblast growth factor. J Biol Chem. 2000;275(36):27650–6.  https://doi.org/10.1074/jbc.M000893200.CrossRefPubMedGoogle Scholar
  93. 93.
    Kay EP, Lee MS, Seong GJ, Lee YG. TGF-beta s stimulate cell proliferation via an autocrine production of FGF-2 in corneal stromal fibroblasts. Curr Eye Res. 1998;17(3):286–93.CrossRefGoogle Scholar
  94. 94.
    Maltseva O, Folger P, Zekaria D, Petridou S, Masur SK. Fibroblast growth factor reversal of the corneal myofibroblast phenotype. Invest Ophthalmol Vis Sci. 2001;42(11):2490–5.PubMedGoogle Scholar
  95. 95.
    Yu ZH, Wang DD, Zhou ZY, He SL, Chen AA, Wang J. Mutant soluble ectodomain of fibroblast growth factor receptor-2 IIIc attenuates bleomycin-induced pulmonary fibrosis in mice. Biol Pharm Bull. 2012;35(5):731–6.CrossRefGoogle Scholar
  96. 96.
    Chen Z, Tan W, Zhang L, Tan Q, Yang J. Beneficial impact of bFGF antisense therapy in a rat model of pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2015;32(1):22–31. Epub 2015/06/22PubMedGoogle Scholar
  97. 97.
    Guzy RD, Stoilov I, Elton TJ, Mecham RP, Ornitz DM. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin. Am J Respir Cell Mol Biol. 2015;52(1):116–28.  https://doi.org/10.1165/rcmb.2014-0184OC.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Inoue Y, King TE, Barker E, Daniloff E, Newman LS. Basic fibroblast growth factor and its receptors in idiopathic pulmonary fibrosis and lymphangioleiomyomatosis. Am J Respir Crit Care Med. 2002;166(5):765–73.  https://doi.org/10.1164/rccm.2010014.CrossRefPubMedGoogle Scholar
  99. 99.
    Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15(4):255–73.  https://doi.org/10.1016/j.cytogfr.2004.03.006.CrossRefPubMedGoogle Scholar
  100. 100.
    Levitzki A. PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases. Cytokine Growth Factor Rev. 2004;15(4):229–35.  https://doi.org/10.1016/j.cytogfr.2004.03.010.CrossRefPubMedGoogle Scholar
  101. 101.
    Hetzel M, Bachem M, Anders D, Trischler G, Faehling M. Different effects of growth factors on proliferation and matrix production of normal and fibrotic human lung fibroblasts. Lung. 2005;183(4):225–37.  https://doi.org/10.1007/s00408-004-2534-z.CrossRefPubMedGoogle Scholar
  102. 102.
    Kilarski WW, Jura N, Gerwins P. An ex vivo model for functional studies of myofibroblasts. Lab Investig. 2005;85(5):643–54.  https://doi.org/10.1038/labinvest.3700255.CrossRefPubMedGoogle Scholar
  103. 103.
    Yoshida M, Sakuma J, Hayashi S, Abe K, Saito I, Harada S, et al. A histologically distinctive interstitial pneumonia induced by overexpression of the interleukin 6, transforming growth factor beta 1, or platelet-derived growth factor B gene. Proc Natl Acad Sci U S A. 1995;92(21):9570–4.CrossRefGoogle Scholar
  104. 104.
    Homma S, Nagaoka I, Abe H, Takahashi K, Seyama K, Nukiwa T, et al. Localization of platelet-derived growth factor and insulin-like growth factor I in the fibrotic lung. Am J Respir Crit Care Med. 1995;152(6 Pt 1):2084–9.  https://doi.org/10.1164/ajrccm.152.6.8520779.CrossRefPubMedGoogle Scholar
  105. 105.
    Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell. 2011;22(20):3791–800. Epub 2011/08/24.  https://doi.org/10.1091/mbc.E11-05-0393.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Kajihara I, Jinnin M, Honda N, Makino K, Makino T, Masuguchi S, et al. Scleroderma dermal fibroblasts overexpress vascular endothelial growth factor due to autocrine transforming growth factor β signaling. Mod Rheumatol. 2013;23(3):516–24. Epub 2012/06/28.  https://doi.org/10.1007/s10165-012-0698-6.CrossRefPubMedGoogle Scholar
  107. 107.
    Ando M, Miyazaki E, Ito T, Hiroshige S, Nureki SI, Ueno T, et al. Significance of serum vascular endothelial growth factor level in patients with idiopathic pulmonary fibrosis. Lung. 2010;188(3):247–52. Epub 2010/01/12.  https://doi.org/10.1007/s00408-009-9223-x.CrossRefPubMedGoogle Scholar
  108. 108.
    Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45(5):1434–45. Epub 2015/03/05.  https://doi.org/10.1183/09031936.00174914.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Holgate ST. Pathogenesis of asthma. Clin Exp Allergy. 2008;38(6):872–97.  https://doi.org/10.1111/j.1365-2222.2008.02971.x.CrossRefPubMedGoogle Scholar
  110. 110.
    Sun L, Louie MC, Vannella KM, Wilke CA, LeVine AM, Moore BB, et al. New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis. Am J Physiol Lung Cell Mol Physiol. 2011;300(3):L341–53. Epub 2010/12/03.  https://doi.org/10.1152/ajplung.00122.2010.CrossRefPubMedGoogle Scholar
  111. 111.
    Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12(1):99–106. Epub 2005/12/04.  https://doi.org/10.1038/nm1332.CrossRefPubMedGoogle Scholar
  112. 112.
    Firszt R, Francisco D, Church TD, Thomas JM, Ingram JL, Kraft M. Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-β1 in airway fibroblasts in asthma. Eur Respir J. 2014;43(2):464–73. Epub 2013/05/16.  https://doi.org/10.1183/09031936.00068712.CrossRefPubMedGoogle Scholar
  113. 113.
    Oriente A, Fedarko NS, Pacocha SE, Huang SK, Lichtenstein LM, Essayan DM. Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J Pharmacol Exp Ther. 2000;292(3):988–94.PubMedGoogle Scholar
  114. 114.
    Saito A, Okazaki H, Sugawara I, Yamamoto K, Takizawa H. Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro. Int Arch Allergy Immunol. 2003;132(2):168–76. doi: 73718CrossRefGoogle Scholar
  115. 115.
    Murray LA, Zhang H, Oak SR, Coelho AL, Herath A, Flaherty KR, et al. Targeting interleukin-13 with tralokinumab attenuates lung fibrosis and epithelial damage in a humanized SCID idiopathic pulmonary fibrosis model. Am J Respir Cell Mol Biol. 2014;50(5):985–94.  https://doi.org/10.1165/rcmb.2013-0342OC.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Chung SI, Horton JA, Ramalingam TR, White AO, Chung EJ, Hudak KE, et al. IL-13 is a therapeutic target in radiation lung injury. Sci Rep. 2016;6:39714. Epub 2016/12/22.  https://doi.org/10.1038/srep39714.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Enoksson M, Lyberg K, Möller-Westerberg C, Fallon PG, Nilsson G, Lunderius-Andersson C. Mast cells as sensors of cell injury through IL-33 recognition. J Immunol. 2011;186(4):2523–8. Epub 2011/01/14.  https://doi.org/10.4049/jimmunol.1003383.CrossRefPubMedGoogle Scholar
  118. 118.
    Lunderius-Andersson C, Enoksson M, Nilsson G. Mast cells respond to cell injury through the recognition of IL-33. Front Immunol. 2012;3:82. Epub 2012/04/19.  https://doi.org/10.3389/fimmu.2012.00082.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Luzina IG, Kopach P, Lockatell V, Kang PH, Nagarsekar A, Burke AP, et al. Interleukin-33 potentiates bleomycin-induced lung injury. Am J Respir Cell Mol Biol. 2013;49(6):999–1008.  https://doi.org/10.1165/rcmb.2013-0093OC.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS, Zhang L, et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol. 2014;134(6):1422–32.e11. Epub 2014/06/27.  https://doi.org/10.1016/j.jaci.2014.05.011.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001;294(5548):1871–5.  https://doi.org/10.1126/science.294.5548.1871.CrossRefPubMedGoogle Scholar
  122. 122.
    Phan SH, McGarry BM, Loeffler KM, Kunkel SL. Binding of leukotriene C4 to rat lung fibroblasts and stimulation of collagen synthesis in vitro. Biochemistry. 1988;27(8):2846–53.CrossRefGoogle Scholar
  123. 123.
    Fireman E, Schwartz Y, Mann A, Greif J. Effect of montelukast, a cysteinyl receptor antagonist, on myofibroblasts in interstitial lung disease. J Clin Immunol. 2004;24(4):418–25.  https://doi.org/10.1023/B:JOCI.0000029110.11097.4d.CrossRefPubMedGoogle Scholar
  124. 124.
    Perng DW, Wu YC, Chang KT, Wu MT, Chiou YC, Su KC, et al. Leukotriene C4 induces TGF-beta1 production in airway epithelium via p38 kinase pathway. Am J Respir Cell Mol Biol. 2006;34(1):101–7.  https://doi.org/10.1165/rcmb.2005-0068OC.CrossRefPubMedGoogle Scholar
  125. 125.
    Vannella KM, McMillan TR, Charbeneau RP, Wilke CA, Thomas PE, Toews GB, et al. Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function. J Immunol. 2007;179(11):7883–90.CrossRefGoogle Scholar
  126. 126.
    Peters-Golden M, Bailie M, Marshall T, Wilke C, Phan SH, Toews GB, et al. Protection from pulmonary fibrosis in leukotriene-deficient mice. Am J Respir Crit Care Med. 2002;165(2):229–35.  https://doi.org/10.1164/ajrccm.165.2.2104050.CrossRefPubMedGoogle Scholar
  127. 127.
    Failla M, Genovese T, Mazzon E, Gili E, Muià C, Sortino M, et al. Pharmacological inhibition of leukotrienes in an animal model of bleomycin-induced acute lung injury. Respir Res. 2006;7:137. Epub 2006/11/21.  https://doi.org/10.1186/1465-9921-7-137.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Izumo T, Kondo M, Nagai A. Cysteinyl-leukotriene 1 receptor antagonist attenuates bleomycin-induced pulmonary fibrosis in mice. Life Sci. 2007;80(20):1882–6. Epub 2007/03/12.  https://doi.org/10.1016/j.lfs.2007.02.038.CrossRefPubMedGoogle Scholar
  129. 129.
    Shimbori C, Shiota N, Okunishi H. Effects of montelukast, a cysteinyl-leukotriene type 1 receptor antagonist, on the pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Eur J Pharmacol. 2011;650(1):424–30. Epub 2010/10/27.  https://doi.org/10.1016/j.ejphar.2010.09.084.CrossRefPubMedGoogle Scholar
  130. 130.
    Shimbori C, Shiota N, Okunishi H. Pranlukast, a cysteinyl leukotriene type 1 receptor antagonist, attenuates the progression but not the onset of silica-induced pulmonary fibrosis in mice. Int Arch Allergy Immunol. 2012;158(3):241–51. Epub 2012/02/27.  https://doi.org/10.1159/000331439.CrossRefPubMedGoogle Scholar
  131. 131.
    Li X, Rayford H, Uhal BD. Essential roles for angiotensin receptor AT1a in bleomycin-induced apoptosis and lung fibrosis in mice. Am J Pathol. 2003;163(6):2523–30.  https://doi.org/10.1016/S0002-9440(10)63607-3.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Otsuka M, Takahashi H, Shiratori M, Chiba H, Abe S. Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist. Thorax. 2004;59(1):31–8.CrossRefGoogle Scholar
  133. 133.
    Molina-Molina M, Serrano-Mollar A, Bulbena O, Fernandez-Zabalegui L, Closa D, Marin-Arguedas A, et al. Losartan attenuates bleomycin induced lung fibrosis by increasing prostaglandin E2 synthesis. Thorax. 2006;61(7):604–10. Epub 2006/04/06.  https://doi.org/10.1136/thx.2005.051946.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Waseda Y, Yasui M, Nishizawa Y, Inuzuka K, Takato H, Ichikawa Y, et al. Angiotensin II type 2 receptor antagonist reduces bleomycin-induced pulmonary fibrosis in mice. Respir Res. 2008;9:43. Epub 2008/05/23.  https://doi.org/10.1186/1465-9921-9-43.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Martin MM, Buckenberger JA, Jiang J, Malana GE, Knoell DL, Feldman DS, et al. TGF-beta1 stimulates human AT1 receptor expression in lung fibroblasts by cross talk between the Smad, p38 MAPK, JNK, and PI3K signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L790–9. Epub 2007/06/29.  https://doi.org/10.1152/ajplung.00099.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Königshoff M, Wilhelm A, Jahn A, Sedding D, Amarie OV, Eul B, et al. The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis. Am J Respir Cell Mol Biol. 2007;37(6):640–50. Epub 2007/07/13.  https://doi.org/10.1165/rcmb.2006-0379TR.CrossRefPubMedGoogle Scholar
  137. 137.
    Marshall RP, Gohlke P, Chambers RC, Howell DC, Bottoms SE, Unger T, et al. Angiotensin II and the fibroproliferative response to acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2004;286(1):L156–64. Epub 2003/05/16.  https://doi.org/10.1152/ajplung.00313.2002.CrossRefPubMedGoogle Scholar
  138. 138.
    Gill S, Wight TN, Frevert CW. Proteoglycans: key regulators of pulmonary inflammation and the innate immune response to lung infection. Anat Rec (Hoboken). 2010;293(6):968–81.  https://doi.org/10.1002/ar.21094.CrossRefGoogle Scholar
  139. 139.
    Westergren-Thorsson G, Hernnäs J, Särnstrand B, Oldberg A, Heinegård D, Malmström A. Altered expression of small proteoglycans, collagen, and transforming growth factor-beta 1 in developing bleomycin-induced pulmonary fibrosis in rats. J Clin Invest. 1993;92(2):632–7.  https://doi.org/10.1172/JCI116631.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Venkatesan N, Ebihara T, Roughley PJ, Ludwig MS. Alterations in large and small proteoglycans in bleomycin-induced pulmonary fibrosis in rats. Am J Respir Crit Care Med. 2000;161(6):2066–73.  https://doi.org/10.1164/ajrccm.161.6.9909098.CrossRefPubMedGoogle Scholar
  141. 141.
    Bensadoun ES, Burke AK, Hogg JC, Roberts CR. Proteoglycan deposition in pulmonary fibrosis. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1819–28.  https://doi.org/10.1164/ajrccm.154.6.8970376.CrossRefPubMedGoogle Scholar
  142. 142.
    Kliment CR, Englert JM, Gochuico BR, Yu G, Kaminski N, Rosas I, et al. Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem. 2009;284(6):3537–45. Epub 2008/12/09.  https://doi.org/10.1074/jbc.M807001200.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Shaukat I, Barré L, Venkatesan N, Li D, Jaquinet JC, Fournel-Gigleux S, et al. Targeting of proteoglycan synthesis pathway: a new strategy to counteract excessive matrix proteoglycan deposition and transforming growth factor-β1-induced fibrotic phenotype in lung fibroblasts. PLoS One. 2016;11(1):e0146499. Epub 2016/01/11.  https://doi.org/10.1371/journal.pone.0146499.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Caldwell MA, Garcion E, ter Borg MG, He X, Svendsen CN. Heparin stabilizes FGF-2 and modulates striatal precursor cell behavior in response to EGF. Exp Neurol. 2004;188(2):408–20.  https://doi.org/10.1016/j.expneurol.2004.05.007.CrossRefPubMedGoogle Scholar
  145. 145.
    Mann DA, Oakley F. Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):905–10. Epub 2012/09/29.  https://doi.org/10.1016/j.bbadis.2012.09.009.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Welsh DJ, Harnett M, MacLean M, Peacock AJ. Proliferation and signaling in fibroblasts: role of 5-hydroxytryptamine2A receptor and transporter. Am J Respir Crit Care Med. 2004;170(3):252–9. Epub 2004/04/15.  https://doi.org/10.1164/rccm.200302-264OC.CrossRefPubMedGoogle Scholar
  147. 147.
    Königshoff M, Dumitrascu R, Udalov S, Amarie OV, Reiter R, Grimminger F, et al. Increased expression of 5-hydroxytryptamine2A/B receptors in idiopathic pulmonary fibrosis: a rationale for therapeutic intervention. Thorax. 2010;65(11):949–55. Epub 2010/07/29.  https://doi.org/10.1136/thx.2009.134353.CrossRefPubMedGoogle Scholar
  148. 148.
    Löfdahl A, Rydell-Törmänen K, Müller C, Martina Holst C, Thiman L, Ekström G, et al. 5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo. Physiol Rep. 2016;4(15):e12873.  https://doi.org/10.14814/phy2.12873.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Tawfik MK, Makary S. 5-HT7 receptor antagonism (SB-269970) attenuates bleomycin-induced pulmonary fibrosis in rats via downregulating oxidative burden and inflammatory cascades and ameliorating collagen deposition: comparison to terguride. Eur J Pharmacol. 2017. Epub 2017/08/16;  https://doi.org/10.1016/j.ejphar.2017.08.014.CrossRefGoogle Scholar
  150. 150.
    Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA. Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol. 2001;167(7):4008–16.CrossRefGoogle Scholar
  151. 151.
    Pardo A, Selman M. Role of matrix metalloproteases in idiopathic pulmonary fibrosis. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S9.  https://doi.org/10.1186/1755-1536-5-S1-S9.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Pardo A, Cabrera S, Maldonado M, Selman M. Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respir Res. 2016;17:23. Epub 2016/03/04.  https://doi.org/10.1186/s12931-016-0343-6.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Russell RE, Culpitt SV, DeMatos C, Donnelly L, Smith M, Wiggins J, et al. Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2002;26(5):602–9.  https://doi.org/10.1165/ajrcmb.26.5.4685.CrossRefPubMedGoogle Scholar
  154. 154.
    Zheng G, Lyons JG, Tan TK, Wang Y, Hsu TT, Min D, et al. Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol. 2009;175(2):580–91. Epub 2009/07/09.  https://doi.org/10.2353/ajpath.2009.080983.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Zhao Y, Qiao X, Wang L, Tan TK, Zhao H, Zhang Y, et al. Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells. BMC Cell Biol. 2016;17(1):21. Epub 2016/04/29.  https://doi.org/10.1186/s12860-016-0101-0.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Wu L, Derynck R. Essential role of TGF-beta signaling in glucose-induced cell hypertrophy. Dev Cell. 2009;17(1):35–48.  https://doi.org/10.1016/j.devcel.2009.05.010.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Selman M, Ruiz V, Cabrera S, Segura L, Ramírez R, Barrios R, et al. TIMP-1, −2, −3, and −4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol. 2000;279(3):L562–74.CrossRefGoogle Scholar
  158. 158.
    Tchougounova E, Lundequist A, Fajardo I, Winberg JO, Abrink M, Pejler G. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem. 2005;280(10):9291–6. Epub 2004/12/22.  https://doi.org/10.1074/jbc.M410396200.CrossRefPubMedGoogle Scholar
  159. 159.
    Iddamalgoda A, Le QT, Ito K, Tanaka K, Kojima H, Kido H. Mast cell tryptase and photoaging: possible involvement in the degradation of extra cellular matrix and basement membrane proteins. Arch Dermatol Res. 2008;300(Suppl 1):S69–76.  https://doi.org/10.1007/s00403-007-0806-1.CrossRefPubMedGoogle Scholar
  160. 160.
    Di S, Ziyou Y, Liu NF. Pathological changes of lymphedematous skin: increased mast cells, related proteases, and activated transforming growth factor-β1. Lymphat Res Biol. 2016;14(3):162–71. Epub 2016/09/06.  https://doi.org/10.1089/lrb.2016.0010.CrossRefPubMedGoogle Scholar
  161. 161.
    Kirshenbaum AS, Cruse G, Desai A, Bandara G, Leerkes M, Lee CC, et al. Immunophenotypic and ultrastructural analysis of mast cells in Hermansky-Pudlak syndrome type-1: a possible connection to pulmonary fibrosis. PLoS One. 2016;11(7):e0159177. Epub 2016/07/26.  https://doi.org/10.1371/journal.pone.0159177.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Fowlkes V, Wilson CG, Carver W, Goldsmith EC. Mechanical loading promotes mast cell degranulation via RGD-integrin dependent pathways. J Biomech. 2013;46(4):788–95.  https://doi.org/10.1016/j.jbiomech.2012.11.014.CrossRefPubMedGoogle Scholar
  163. 163.
    Kawanami O, Ferrans VJ, Fulmer JD, Crystal RG. Ultrastructure of pulmonary mast cells in patients with fibrotic lung disorders. Lab Investig. 1979;40(6):717–34.PubMedGoogle Scholar
  164. 164.
    Fortoul TI, Barrios R. Mast cells and idiopathic lung fibrosis. Arch Invest Med (Mex). 1990;21(1):5–10.Google Scholar
  165. 165.
    Hunt LW, Colby TV, Weiler DA, Sur S, Butterfield JH. Immunofluorescent staining for mast cells in idiopathic pulmonary fibrosis: quantification and evidence for extracellular release of mast cell tryptase. Mayo Clin Proc. 1992;67(10):941–8.CrossRefGoogle Scholar
  166. 166.
    Edwards ST, Cruz AC, Donnelly S, Dazin PF, Schulman ES, Jones KD, et al. c-Kit immunophenotyping and metalloproteinase expression profiles of mast cells in interstitial lung diseases. J Pathol. 2005;206(3):279–90.  https://doi.org/10.1002/path.1780.CrossRefPubMedGoogle Scholar
  167. 167.
    Cha SI, Chang CS, Kim EK, Lee JW, Matthay MA, Golden JA, et al. Lung mast cell density defines a subpopulation of patients with idiopathic pulmonary fibrosis. Histopathology. 2012;61(1):98–106.  https://doi.org/10.1111/j.1365-2559.2012.04197.x.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Rankin JA, Kaliner M, Reynolds HY. Histamine levels in bronchoalveolar lavage from patients with asthma, sarcoidosis, and idiopathic pulmonary fibrosis. J Allergy Clin Immunol. 1987;79(2):371–7.CrossRefGoogle Scholar
  169. 169.
    Casale TB, Trapp S, Zehr B, Hunninghake GW. Bronchoalveolar lavage fluid histamine levels in interstitial lung diseases. Am Rev Respir Dis. 1988;138(6):1604–8.  https://doi.org/10.1164/ajrccm/138.6.1604.CrossRefPubMedGoogle Scholar
  170. 170.
    Mori H, Tanaka H, Kawada K, Nagai H, Koda A. Suppressive effects of tranilast on pulmonary fibrosis and activation of alveolar macrophages in mice treated with bleomycin: role of alveolar macrophages in the fibrosis. Jpn J Pharmacol. 1995;67(4):279–89.CrossRefGoogle Scholar
  171. 171.
    Chang JC, Leung J, Tang T, Holzknecht ZE, Hartwig MG, Duane Davis R, et al. Cromolyn ameliorates acute and chronic injury in a rat lung transplant model. J Heart Lung Transplant. 2014;33(7):749–57. Epub 2014/03/27.  https://doi.org/10.1016/j.healun.2014.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Zhou JS, Xing W, Friend DS, Austen KF, Katz HR. Mast cell deficiency in Kit(W-sh) mice does not impair antibody-mediated arthritis. J Exp Med. 2007;204(12):2797–802.  https://doi.org/10.1084/jem.20071391.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Reber LL, Marichal T, Galli SJ. New models for analyzing mast cell functions in vivo. Trends Immunol. 2012;33(12):613–25. Epub 2012/11/02.  https://doi.org/10.1016/j.it.2012.09.008.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    O’Brien-Ladner AR, Wesselius LJ, Stechschulte DJ. Bleomycin injury of the lung in a mast-cell-deficient model. Agents Actions. 1993;39(1–2):20–4.CrossRefGoogle Scholar
  175. 175.
    Brown JM, Swindle EJ, Kushnir-Sukhov NM, Holian A, Metcalfe DD. Silica-directed mast cell activation is enhanced by scavenger receptors. Am J Respir Cell Mol Biol. 2007;36(1):43–52.  https://doi.org/10.1165/rcmb.2006-0197OC.CrossRefPubMedGoogle Scholar
  176. 176.
    Ding L, Dolgachev V, Wu Z, Liu T, Nakashima T, Ullenbruch M, et al. Essential role of stem cell factor-c-Kit signalling pathway in bleomycin-induced pulmonary fibrosis. J Pathol. 2013;230(2):205–14. Epub 2013/04/03.  https://doi.org/10.1002/path.4177.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Mori H, Kawada K, Zhang P, Uesugi Y, Sakamoto O, Koda A. Bleomycin-induced pulmonary fibrosis in genetically mast cell-deficient WBB6F1-W/Wv mice and mechanism of the suppressive effect of tranilast, an antiallergic drug inhibiting mediator release from mast cells, on fibrosis. Int Arch Allergy Appl Immunol. 1991;95(2–3):195–201.CrossRefGoogle Scholar
  178. 178.
    Okazaki T, Hirota S, Xu ZD, Maeyama K, Nakama A, Kawano S, et al. Increase of mast cells in the liver and lung may be associated with but not a cause of fibrosis: demonstration using mast cell-deficient Ws/Ws rats. Lab Investig. 1998;78(11):1431–8.PubMedGoogle Scholar
  179. 179.
    Reber LL, Daubeuf F, Pejler G, Abrink M, Frossard N. Mast cells contribute to bleomycin-induced lung inflammation and injury in mice through a chymase/mast cell protease 4-dependent mechanism. J Immunol. 2014;192(4):1847–54.  https://doi.org/10.4049/jimmunol.1300875.CrossRefPubMedGoogle Scholar
  180. 180.
    Miller HR, Pemberton AD. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology. 2002;105(4):375–90.CrossRefGoogle Scholar
  181. 181.
    Lawson WE, Polosukhin VV, Stathopoulos GT, Zoia O, Han W, Lane KB, et al. Increased and prolonged pulmonary fibrosis in surfactant protein C-deficient mice following intratracheal bleomycin. Am J Pathol. 2005;167(5):1267–77.  https://doi.org/10.1016/S0002-9440(10)61214-X.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L152–60.  https://doi.org/10.1152/ajplung.00313.2007.CrossRefPubMedGoogle Scholar
  183. 183.
    Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol. 2008;40(3):362–82. Epub 2007/08/30.  https://doi.org/10.1016/j.biocel.2007.08.011.CrossRefPubMedGoogle Scholar
  184. 184.
    Arumugam T, Ramachandran V, Logsdon CD. Effect of cromolyn on S100P interactions with RAGE and pancreatic cancer growth and invasion in mouse models. J Natl Cancer Inst. 2006;98(24):1806–18.  https://doi.org/10.1093/jnci/djj498.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ. Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol. 2005;167(3):835–48.  https://doi.org/10.1016/S0002-9440(10)62055-X.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Nigrovic PA, Gray DH, Jones T, Hallgren J, Kuo FC, Chaletzky B, et al. Genetic inversion in mast cell-deficient (Wsh) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy. Am J Pathol. 2008;173(6):1693–701. Epub 2008/11/06.  https://doi.org/10.2353/ajpath.2008.080407.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Gutierrez DA, Muralidhar S, Feyerabend TB, Herzig S, Rodewald HR. Hematopoietic kit deficiency, rather than lack of mast cells, protects mice from obesity and insulin resistance. Cell Metab. 2015;21(5):678–91.  https://doi.org/10.1016/j.cmet.2015.04.013.CrossRefPubMedGoogle Scholar
  188. 188.
    Jippo T, Lee YM, Katsu Y, Tsujino K, Morii E, Kim DK, et al. Deficient transcription of mouse mast cell protease 4 gene in mutant mice of mi/mi genotype. Blood. 1999;93(6):1942–50.PubMedGoogle Scholar
  189. 189.
    Scholten J, Hartmann K, Gerbaulet A, Krieg T, Müller W, Testa G, et al. Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgenic Res. 2008;17(2):307–15. Epub 2007/10/31.  https://doi.org/10.1007/s11248-007-9153-4.CrossRefPubMedGoogle Scholar
  190. 190.
    Sawaguchi M, Tanaka S, Nakatani Y, Harada Y, Mukai K, Matsunaga Y, et al. Role of mast cells and basophils in IgE responses and in allergic airway hyperresponsiveness. J Immunol. 2012;188(4):1809–18. Epub 2012/01/16.  https://doi.org/10.4049/jimmunol.1101746.CrossRefPubMedGoogle Scholar
  191. 191.
    Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H, et al. Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. PLoS One. 2011;6(9):e25538. Epub 2011/09/30.  https://doi.org/10.1371/journal.pone.0025538.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Farkas L, Gauldie J, Voelkel NF, Kolb M. Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors. Am J Respir Cell Mol Biol. 2011;45(1):1–15. Epub 2010/11/05.  https://doi.org/10.1165/rcmb.2010-0365TR.CrossRefPubMedGoogle Scholar
  193. 193.
    Shimoda LA, Laurie SS. Vascular remodeling in pulmonary hypertension. J Mol Med (Berl). 2013;91(3):297–309. Epub 2013/01/19.  https://doi.org/10.1007/s00109-013-0998-0.CrossRefGoogle Scholar
  194. 194.
    Collum SD, Amione-Guerra J, Cruz-Solbes AS, DiFrancesco A, Hernandez AM, Hanmandlu A, et al. Pulmonary hypertension associated with idiopathic pulmonary fibrosis: current and future perspectives. Can Respir J. 2017;2017:1430350. Epub 2017/02/13.  https://doi.org/10.1155/2017/1430350.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Farha S, Sharp J, Asosingh K, Park M, Comhair SA, Tang WH, et al. Mast cell number, phenotype, and function in human pulmonary arterial hypertension. Pulm Circ. 2012;2(2):220–8.  https://doi.org/10.4103/2045-8932.97609.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Dahal BK, Kosanovic D, Kaulen C, Cornitescu T, Savai R, Hoffmann J, et al. Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats. Respir Res. 2011;12:60. Epub 2011/05/02.  https://doi.org/10.1186/1465-9921-12-60.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Hoffmann J, Yin J, Kukucka M, Yin N, Saarikko I, Sterner-Kock A, et al. Mast cells promote lung vascular remodelling in pulmonary hypertension. Eur Respir J. 2011;37(6):1400–10. Epub 2010/12/09.  https://doi.org/10.1183/09031936.00043310.CrossRefPubMedGoogle Scholar
  198. 198.
    MacLean MR, Dempsie Y. Serotonin and pulmonary hypertension – from bench to bedside? Curr Opin Pharmacol. 2009;9(3):281–6. Epub 2009/03/13.  https://doi.org/10.1016/j.coph.2009.02.005.CrossRefPubMedGoogle Scholar
  199. 199.
    Galajda Z, Balla J, Szentmiklosi AJ, Biro T, Czifra G, Dobrosi N, et al. Histamine and H1 -histamine receptors faster venous circulation. J Cell Mol Med. 2011;15(12):2614–23.  https://doi.org/10.1111/j.1582-4934.2010.01254.x.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Takai S, Shiota N, Jin D, Miyazaki M. Functional role of chymase in angiotensin II formation in human vascular tissue. J Cardiovasc Pharmacol. 1998;32(5):826–33.CrossRefGoogle Scholar
  201. 201.
    Ribatti D, Crivellato E. Mast cells, angiogenesis and cancer. Adv Exp Med Biol. 2011;716:270–88.  https://doi.org/10.1007/978-1-4419-9533-9_14.CrossRefPubMedGoogle Scholar
  202. 202.
    Keane MP. Angiogenesis and pulmonary fibrosis: feast or famine? Am J Respir Crit Care Med. 2004;170(3):207–9.  https://doi.org/10.1164/rccm.2405007.CrossRefPubMedGoogle Scholar
  203. 203.
    da Silva EZ, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62(10):698–738. Epub 2014/07/25.  https://doi.org/10.1369/0022155414545334.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Bartelds B, van Loon RLE, Mohaupt S, Wijnberg H, Dickinson MG, Boersma B, et al. Mast cell inhibition improves pulmonary vascular remodeling in pulmonary hypertension. Chest. 2012;141(3):651–60. Epub 2011/09/22.  https://doi.org/10.1378/chest.11-0663.CrossRefPubMedGoogle Scholar
  205. 205.
    Gambaryan N, Perros F, Montani D, Cohen-Kaminsky S, Mazmanian GM, Humbert M. Imatinib inhibits bone marrow-derived c-kit+ cell mobilisation in hypoxic pulmonary hypertension. Eur Respir J. 2010;36(5):1209–11.  https://doi.org/10.1183/09031936.00052210.CrossRefPubMedGoogle Scholar
  206. 206.
    Farha S, Dweik R, Rahaghi F, Benza R, Hassoun P, Frantz R, et al. Imatinib in pulmonary arterial hypertension: c-kit inhibition. Pulm Circ. 2014;4(3):452–5.  https://doi.org/10.1086/677359.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Bajwah S, Ross JR, Peacock JL, Higginson IJ, Wells AU, Patel AS, et al. Interventions to improve symptoms and quality of life of patients with fibrotic interstitial lung disease: a systematic review of the literature. Thorax. 2013;68(9):867–79. Epub 2012/12/01.  https://doi.org/10.1136/thoraxjnl-2012-202040.CrossRefPubMedGoogle Scholar
  208. 208.
    Key AL, Holt K, Hamilton A, Smith JA, Earis JE. Objective cough frequency in idiopathic pulmonary fibrosis. Cough. 2010;6:4. Epub 2010/06/21.  https://doi.org/10.1186/1745-9974-6-4.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Ryerson CJ, Abbritti M, Ley B, Elicker BM, Jones KD, Collard HR. Cough predicts prognosis in idiopathic pulmonary fibrosis. Respirology. 2011;16(6):969–75.  https://doi.org/10.1111/j.1440-1843.2011.01996.x.CrossRefPubMedGoogle Scholar
  210. 210.
    Hope-Gill BD, Hilldrup S, Davies C, Newton RP, Harrison NK. A study of the cough reflex in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2003;168(8):995–1002. Epub 2003/08/13.  https://doi.org/10.1164/rccm.200304-597OC.CrossRefPubMedGoogle Scholar
  211. 211.
    Harrison NK. Cough, sarcoidosis and idiopathic pulmonary fibrosis: raw nerves and bad vibrations. Cough. 2013;9(1):9. Epub 2013/03/06.  https://doi.org/10.1186/1745-9974-9-9.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, et al. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U S A. 1994;91(9):3739–43.CrossRefGoogle Scholar
  213. 213.
    Kleij HP, Bienenstock J. Significance of conversation between mast cells and nerves. Allergy Asthma Clin Immunol. 2005;1(2):65–80. Epub 2005/06/15.  https://doi.org/10.1186/1710-1492-1-2-65.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    van Diest SA, Stanisor OI, Boeckxstaens GE, de Jonge WJ, van den Wijngaard RM. Relevance of mast cell-nerve interactions in intestinal nociception. Biochim Biophys Acta. 2012;1822(1):74–84. Epub 2011/04/07.  https://doi.org/10.1016/j.bbadis.2011.03.019.CrossRefPubMedGoogle Scholar
  215. 215.
    van Manen MJ, Birring SS, Vancheri C, Cottin V, Renzoni EA, Russell AM, et al. Cough in idiopathic pulmonary fibrosis. Eur Respir Rev. 2016;25(141):278–86.  https://doi.org/10.1183/16000617.0090-2015.CrossRefPubMedGoogle Scholar
  216. 216.
    Karra L, Levi-Schaffer F. Down-regulation of mast cell responses through ITIM containing inhibitory receptors. Adv Exp Med Biol. 2011;716:143–59.  https://doi.org/10.1007/978-1-4419-9533-9_9.CrossRefPubMedGoogle Scholar
  217. 217.
    Bachelet I, Munitz A, Berent-Maoz B, Mankuta D, Levi-Schaffer F. Suppression of normal and malignant kit signaling by a bispecific antibody linking kit with CD300a. J Immunol. 2008;180(9):6064–9.CrossRefGoogle Scholar
  218. 218.
    Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM, Oyasu M, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010;16(9):1009–17.  https://doi.org/10.1038/nm.2208.CrossRefPubMedGoogle Scholar
  219. 219.
    Olsen KC, Sapinoro RE, Kottmann RM, Kulkarni AA, Iismaa SE, Johnson GV, et al. Transglutaminase 2 and its role in pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184(6):699–707.  https://doi.org/10.1164/rccm.201101-0013OC.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Zhou Y, Huang X, Hecker L, Kurundkar D, Kurundkar A, Liu H, et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J Clin Invest. 2013;123(3):1096–108.  https://doi.org/10.1172/JCI66700.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Kinoshita K, Aono Y, Azuma M, Kishi J, Takezaki A, Kishi M, et al. Antifibrotic effects of focal adhesion kinase inhibitor in bleomycin-induced pulmonary fibrosis in mice. Am J Respir Cell Mol Biol. 2013;49(4):536–43.  https://doi.org/10.1165/rcmb.2012-0277OC.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chiko Shimbori
    • 1
    • 2
  • Chandak Upagupta
    • 1
  • Paul Forsythe
    • 1
    • 3
  • Martin Kolb
    • 1
  1. 1.Firestone Institute for Respiratory Health, St. Joseph’s Healthcare and Department of MedicineMcMaster UniversityHamiltonCanada
  2. 2.Department of Medicine, Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
  3. 3.McMaster Brain-Body InstituteSt. Joseph’s Healthcare HamiltonHamiltonCanada

Personalised recommendations