Advertisement

Fibrotic Remodeling in Exudative (Wet) Macular Degeneration

  • Joseph N. Martel
  • Vincent Q. Nguyen
  • Andrew W. Eller
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

The interplay of multiple biologic pathways and processes acts in synchrony to repair wounded tissue. Proangiogenic and inflammatory mediators allow enhanced delivery of oxygen and nutrients to repair wounded tissue. Fibrosis is the hallmark feature of wound healing in its final stage. In the eye, subretinal fibrosis, a nonfunctioning mass of fibrotic tissue situated in the subretinal space, is a manifestation of aberrant repair and is the characteristic end-stage subretinal lesion in exudative or neovascular age-related macular degenerative. The subretinal fibrotic lesion is preceded by gradual degeneration of the outer retinal cellular structures, the development of neovascular vessels, inflammation, and retinal tissue damage that culminates into the development of subretinal fibrosis. In this chapter, we will review the pathobiology of exudative age-related macular degeneration (AMD) as it relates to the pathogenesis of its end-stage visually devastating cicatricial lesion: subretinal fibrosis.

Keywords

Subretinal fibrosis Choroidal neovascularization Macular degeneration Ocular wound healing 

Suggested Reading

  1. 1.
    Bressler SB, Silva JC, Bressler NM, Alexander J, Green WR. Clinicopathologic correlation of occult choroidal neovascularization in age-related macular degeneration. Arch Ophthalmol. 1992;110:827–32.CrossRefGoogle Scholar
  2. 2.
    Daniel E, Toth CA, Grunwald JE, Jaffe GJ, Martin DF, Fine SL, Maguire MG. Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2014;121(3):656–66.CrossRefGoogle Scholar
  3. 3.
    Diago T, Pulido JS, Molina JR, Collett LC, Link TP, Ryan EH Jr. Ranibizumab combined with low-dose sorafenib for exudative age-related macular degeneration. Mayo Clin Proc. 2008;83(2):231–4.CrossRefGoogle Scholar
  4. 4.
    Rein DB. Forecasting age-related macular degeneration through the year 2050. Arch Ophthalmol. 2009;127:533.CrossRefGoogle Scholar
  5. 5.
    Friedlander M. Fibrosis and diseases of the eye. J Clin Investig. 2007;117:576–86.CrossRefGoogle Scholar
  6. 6.
    Friedman DS, O'Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122:564–72.CrossRefGoogle Scholar
  7. 7.
    Grossniklaus HE. Histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Arch Ophthalmol. 1998;116:745.CrossRefGoogle Scholar
  8. 8.
    Grossniklaus HE, Hutchinson AK, Capone A Jr, Woolfson J, Lambert HM. Clinicopathologic features of surgically excised choroidal neovascular membranes. Ophthalmology. 1994;101:1099–111.CrossRefGoogle Scholar
  9. 9.
    Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Exp Eye Res. 2016;142:19–25.CrossRefGoogle Scholar
  10. 10.
    Knickelbein JE, Chan C-C, Sen HN, Ferris FL, Nussenblatt RB. Inflammatory mechanisms of age-related macular degeneration. Int Ophthalmol Clin. 2015;55(3):63–78.CrossRefGoogle Scholar
  11. 11.
    Leibowitz HM, Krueger DE, Maunder LR, et al. The Framingham eye study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973–1975. Surv Ophthalmol. 1980;24:335–610.CrossRefGoogle Scholar
  12. 12.
    Nussenblatt RB, Ferris F. Perspectives: age related macular degeneration and the immune response – implications for therapy. Am J Ophthalmol. 2007;144(4):618–26.CrossRefGoogle Scholar
  13. 13.
    Patel M, Chan C-C. Immunopathological aspects of age-related macular degeneration. Semin Immunopathol. 2008;30:97–110.CrossRefGoogle Scholar
  14. 14.
    Schachat AP. Ryans retina. Edinburgh: Elsevier; 2018.Google Scholar
  15. 15.
    Schlingemann RO. Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2003;242:91–101.CrossRefGoogle Scholar
  16. 16.
    Seddon JM, Willett WC, Speizer FE, et al. A prospective study of cigarette smoking and age-related macular degeneration in women. JAMA. 1996;276:1141–6.CrossRefGoogle Scholar
  17. 17.
    Siedlecki J, Wertheimer C, Wolf A, Liegl R, Priglinger C, Priglinger S, Eibl-Lindner K. Combined VEGF and PDGF inhibition for neovascular AMD: anti-angiogenic properties of axitinib on human endothelial cells and pericytes in vitro. Graefes Arch Clin Exp Ophthalmol. 2017;255:963–72.CrossRefGoogle Scholar
  18. 18.
    Wang Y, Wang VM, Chan C-C. The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment. Eye. 2010;25:127–39.CrossRefGoogle Scholar
  19. 19.
    Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Investig. 2007;117:524–9.CrossRefGoogle Scholar
  20. 20.
    Subfoveal neovascular lesions in age-related macular degeneration. Arch Ophthalmol. 1991;109:1242.Google Scholar
  21. 21.
    Glatt H, Machemer R. Experimental subretinal hemorrhage in rabbits. Am J Ophthalmol. 1982;94(6):762–73.CrossRefGoogle Scholar
  22. 22.
    Toth CA, Morse LS, Hjelmeland LM, Landers MBIII. Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch Ophthalmol. 1991;109(5):723–9.CrossRefGoogle Scholar
  23. 23.
    Nozaki M, Raisler BJ, Sakurai E, et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A. 2006;103:2328–33.CrossRefGoogle Scholar
  24. 24.
    Sivaprasad S, Adewoyin T, Bailey TA, Dandekar SS, Jenkins S, Webster AR, et al. Estimation of systemic complement C3 activity in age-related macular degeneration. Arch Ophthalmol. 2007;125:515–9.CrossRefGoogle Scholar
  25. 25.
    Tuo J, Smith B, Bojanowski CM, et al. The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration. FASEB J. 2004;18:1297–9.CrossRefGoogle Scholar
  26. 26.
    Kent D, Sheridan C. Choroidal neovascularization: a wound healing perspective. Mol Vis. 2003;9:747–55.PubMedGoogle Scholar
  27. 27.
    Nakama T, Yishida S, Ishikawa K, Kobayashi Y, Zhou Y, Nakao S, Sassa Y, Oshima Y, Takao K, Shimahara A, Yoshikawa K, Hamasaki T, Ohgi T, Hayashi H, Matsuda A, Kudo A, Nozaki M, Ogura Y, Kuroda M, Ishibashi T. Inhibition of choroidal fibrovascular membrane formation by a new class of RNA interference therapeutic agent targeting periostin. Gene Ther. 2015;22:127–37.CrossRefGoogle Scholar
  28. 28.
    Nicolò M, Piccolino FC, Zardi L, Giovannini A, Mariotti C. Detection of tenascin-C in surgically excised choroidal neovascular membranes. Graefes Arch Clin Exp Ophthalmol. 2000;238:107–11.  https://doi.org/10.1007/s004170050018.CrossRefPubMedGoogle Scholar
  29. 29.
    Kobayashi Y, Yoshida S, Zhou Y, Nakama T, Ishikawa K, Kubo Y, et al. Tenascin-C secreted by transdifferentiated retinal pigment epithelial cells promotes choroidal neovascularization via integrin αV. Lab Investig. 2016b;96:1178–88.  https://doi.org/10.1038/labinvest.2016.99.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joseph N. Martel
    • 1
  • Vincent Q. Nguyen
    • 2
  • Andrew W. Eller
    • 1
  1. 1.Vitreoretinal Surgery and DiseasesUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.University of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations