Vascular Fibrosis and Disease

  • Mengxue Zhang
  • Bowen Wang
  • K. Craig Kent
  • Lian-Wang GuoEmail author
Part of the Molecular and Translational Medicine book series (MOLEMED)


Fibrosis can lead to a broad range of diseases affecting essentially every organ. Thus, interventions targeting fibrosis are expected to have profound therapeutic effects. However, thus far there are no effective clinical treatments to specifically block fibrotic processes, underscoring the necessity of enhanced research efforts in this arena. The hallmark of vascular fibrotic disorders is extensive extracellular matrix remodeling primarily mediated by myofibroblasts. A prominent feature of the vasculature is that all three major constituent cell types, fibroblasts, smooth muscle cells, and endothelial cells, maintain phenotypic plasticity. In response to various fibrogenic stimuli, these vascular cells along with progenitor cells can transform into myofibroblasts or myofibroblast-like cells, collectively yet variably contributing to vascular fibrosis. As such, the vascular system provides useful models for studying fibrotic mechanisms. In this chapter, we focus on vascular fibrosis and associated diseases, providing an overview of the underlying cellular and molecular mechanisms and their multifaceted impacts on disease outcomes. Potential antifibrotic targets and the emerging importance of epigenetic regulators in the major vascular diseases are also discussed.


Vascular fibrosis Atherosclerosis Restenosis Arterial stiffness Myofibroblast Extracellular matrix TGFbeta Epigenetic regulators 



This work was supported by NIH grants R01 HL133665 (to L-WG), R01HL143469 and R01HL129785 (both to KCK and L-WG), and R01HL-068673 (to KCK), and AHA predoctoral fellowship awards (17PRE33670865 to MZ and 16PRE30160010 to BW).

We thank Dr. Matthew Stratton in the Davis Heart and Lung Research Institute of the Ohio State University for informative discussion and proofreading.

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Benjamin EJ, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Low Wang CC, et al. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus – mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459–502.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Roll S, et al. Dacron vs. PTFE as bypass materials in peripheral vascular surgery – systematic review and meta-analysis. BMC Surg. 2008;8:22.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    McVicker BL, Bennett RG. Novel anti-fibrotic therapies. Front Pharmacol. 2017;8:318.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lan TH, Huang XQ, Tan HM. Vascular fibrosis in atherosclerosis. Cardiovasc Pathol. 2013;22(5):401–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Phys Cell Phys. 2013;304(3):C216–25.CrossRefGoogle Scholar
  7. 7.
    Rockey DC, Bell PD, Hill JA. Fibrosis – a common pathway to organ injury and failure. N Engl J Med. 2015;373(1):96.PubMedCrossRefGoogle Scholar
  8. 8.
    Nanthakumar CB, et al. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov. 2015;14(10):693–720.PubMedCrossRefGoogle Scholar
  9. 9.
    Ruiz-Ortega M, et al. TGF-beta signaling in vascular fibrosis. Cardiovasc Res. 2007;74(2):196–206.PubMedCrossRefGoogle Scholar
  10. 10.
    Goel SA, et al. Mechanisms of post-intervention arterial remodelling. Cardiovasc Res. 2012;96(3):363–71.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Otsuka F, et al. Pathology of coronary atherosclerosis and thrombosis. Cardiovasc Diagn Ther. 2016;6(4):396–408.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Glagov S, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb. 2003;10(5):267–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Chung IM, et al. Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment. J Am Coll Cardiol. 2002;40(12):2072–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Pasterkamp G, de Kleijn DP, Borst C. Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications. Cardiovasc Res. 2000;45(4):843–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Hillis LD, et al. 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58(24):e123–210.PubMedCrossRefGoogle Scholar
  17. 17.
    Kasapis C, Gurm HS. Current approach to the diagnosis and treatment of femoral-popliteal arterial disease. A systematic review. Curr Cardiol Rev. 2009;5(4):296–311.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gloviczki P, et al. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the Society for Vascular Surgery and the American venous forum. J Vasc Surg. 2011;53(5 Suppl):2S–48S.PubMedCrossRefGoogle Scholar
  19. 19.
    Hess CN, et al. Saphenous vein graft failure after coronary artery bypass surgery: insights from PREVENT IV. Circulation. 2014;130(17):1445–51.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lu DY, et al. Vein graft adaptation and fistula maturation in the arterial environment. J Surg Res. 2014;188(1):162–73.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Owens CD, et al. Vein graft failure. J Vasc Surg. 2015;61(1):203–16.PubMedCrossRefGoogle Scholar
  22. 22.
    Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Kassab GS. Biomechanics of the cardiovascular system: the aorta as an illustratory example. J R Soc Interface. 2006;3(11):719–40.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003;21(1):3–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Stratton MS, McKinsey TA. Epigenetic regulation of cardiac fibrosis. J Mol Cell Cardiol. 2016;92:206–13.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Phan SH. Biology of fibroblasts and myofibroblasts. Proc Am Thorac Soc. 2008;5(3):334–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Emerson GG, Segal SS. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: role in vasomotor control. Circ Res. 2000;87(6):474–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sartore S, et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res. 2001;89(12):1111–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Si Y, et al. Protein kinase C-delta mediates adventitial cell migration through regulation of monocyte chemoattractant protein-1 expression in a rat angioplasty model. Arterioscler Thromb Vasc Biol. 2012;32(4):943–54.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Krishnan P, et al. Enhanced neointimal fibroblast, myofibroblast content and altered extracellular matrix composition: implications in the progression of human peripheral artery restenosis. Atherosclerosis. 2016;251:226–33.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Durgin BG, et al. Smooth muscle cell-specific deletion of Col15a1 unexpectedly leads to impaired development of advanced atherosclerotic lesions. Am J Physiol Heart Circ Physiol. 2017;312(5):H943–58.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Douillet CD, et al. Mechanisms by which bradykinin promotes fibrosis in vascular smooth muscle cells: role of TGF-beta and MAPK. Am J Physiol Heart Circ Physiol. 2000;279(6):H2829–37.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    MacLeod DC, et al. Proliferation and extracellular matrix synthesis of smooth muscle cells cultured from human coronary atherosclerotic and restenotic lesions. J Am Coll Cardiol. 1994;23(1):59–65.PubMedCrossRefGoogle Scholar
  36. 36.
    Gan Q, et al. Smooth muscle cells and myofibroblasts use distinct transcriptional mechanisms for smooth muscle alpha-actin expression. Circ Res. 2007;101(9):883–92.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Baum J, Duffy HS. Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol. 2011;57(4):376–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chappell J, et al. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models. Circ Res. 2016;119(12):1313–23.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gomez D, Owens GK. Reconciling smooth muscle cell oligoclonality and proliferative capacity in experimental atherosclerosis. Circ Res. 2016;119(12):1262–4.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lin F, Wang N, Zhang TC. The role of endothelial-mesenchymal transition in development and pathological process. IUBMB Life. 2012;64(9):717–23.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Chen PY, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015;125(12):4514–28.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cooley BC, et al. TGF-beta signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med. 2014;6(227):227ra34.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Chen PY, et al. Fibroblast growth factor receptor 1 is a key inhibitor of TGFbeta signaling in the endothelium. Sci Signal. 2014;7(344):ra90.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hoshino A, et al. Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochem Biophys Res Commun. 2008;368(2):305–10.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Chen D, et al. Fibrocytes mediate intimal hyperplasia post-vascular injury and are regulated by two tissue factor-dependent mechanisms. J Thromb Haemost. 2013;11(5):963–74.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hu Y, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 2004;113(9):1258–65.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chen Y, et al. Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation. Arterioscler Thromb Vasc Biol. 2013;33(8):1844–51.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wu J, et al. Origin of matrix-producing cells that contribute to aortic fibrosis in hypertension. Hypertension. 2016;67(2):461–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Shankman LS, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21(6):628–37.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Di Carlo SE, Peduto L. The perivascular origin of pathological fibroblasts. J Clin Invest. 2018;128(1):54–63.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Jonsson S, et al. Increased levels of leukocyte-derived MMP-9 in patients with stable angina pectoris. PLoS One. 2011;6(4):e19340.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Reilkoff RA, Bucala R, Herzog EL. Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol. 2011;11(6):427–35.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wermuth PJ, Jimenez SA. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clin Transl Med. 2015;4:2.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Orbe J, et al. Different expression of MMPs/TIMP-1 in human atherosclerotic lesions. Relation to plaque features and vascular bed. Atherosclerosis. 2003;170(2):269–76.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Madhur MS, et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol. 2011;31(7):1565–72.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ma T, et al. Th17 cells and IL-17 are involved in the disruption of vulnerable plaques triggered by short-term combination stimulation in apolipoprotein E-knockout mice. Cell Mol Immunol. 2013;10(4):338–48.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Danzaki K, et al. Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2012;32(2):273–80.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–78.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Maurice P, et al. Elastin fragmentation and atherosclerosis progression: the elastokine concept. Trends Cardiovasc Med. 2013;23(6):211–21.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Morimoto S, et al. Fragmentation of internal elastic lamina and spread of smooth muscle cell proliferation induced by percutaneous transluminal coronary angioplasty. Jpn Circ J. 1993;57(5):388–94.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Wong CY, et al. Elastin is a key regulator of outward remodeling in arteriovenous fistulas. Eur J Vasc Endovasc Surg. 2015;49(4):480–6.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Xu J, Shi GP. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta. 2014;1842(11):2106–19.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Goel SA, et al. Preferential secretion of collagen type 3 versus type 1 from adventitial fibroblasts stimulated by TGF-beta/Smad3-treated medial smooth muscle cells. Cell Signal. 2013;25(4):955–60.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Nave AH, et al. Lysyl oxidases play a causal role in vascular remodeling in clinical and experimental pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol. 2014;34(7):1446–58.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Wallner K, et al. Adventitial remodeling after angioplasty is associated with expression of tenascin mRNA by adventitial myofibroblasts. J Am Coll Cardiol. 2001;37(2):655–61.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Giachelli CM, et al. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. 1993;92(4):1686–96.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lindner V, et al. Vascular injury induces expression of periostin: implications for vascular cell differentiation and migration. Arterioscler Thromb Vasc Biol. 2005;25(1):77–83.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Chajara A, et al. Effect of aging on neointima formation and hyaluronan, hyaluronidase and hyaluronectin production in injured rat aorta. Atherosclerosis. 1998;138(1):53–64.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Gaggar A, et al. The role of matrix metalloproteinases in cystic fibrosis lung disease. Eur Respir J. 2011;38(3):721–7.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    George SJ, et al. Inhibition of late vein graft neointima formation in human and porcine models by adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-3. Circulation. 2000;101(3):296–304.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Papazafiropoulou A, Tentolouris N. Matrix metalloproteinases and cardiovascular diseases. Hippokratia. 2009;13(2):76–82.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Cardellini M, et al. TIMP3 is reduced in atherosclerotic plaques from subjects with type 2 diabetes and increased by SirT1. Diabetes. 2009;58(10):2396–401.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85(1):1–31.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Takayanagi T, et al. Vascular ADAM17 as a novel therapeutic target in mediating cardiovascular hypertrophy and perivascular fibrosis induced by angiotensin II. Hypertension. 2016;68(4):949–55.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Cheng XW, et al. Cysteine protease cathepsins in atherosclerosis-based vascular disease and its complications. Hypertension. 2011;58(6):978–86.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lutgens SP, et al. Cathepsin cysteine proteases in cardiovascular disease. FASEB J. 2007;21(12):3029–41.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Oksala N, et al. ADAM-9, ADAM-15, and ADAM-17 are upregulated in macrophages in advanced human atherosclerotic plaques in aorta and carotid and femoral arteries – Tampere vascular study. Ann Med. 2009;41(4):279–90.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ashley EA, et al. Network analysis of human in-stent restenosis. Circulation. 2006;114(24):2644–54.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–38.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Goumans MJ, Liu Z, ten Dijke P. TGF-beta signaling in vascular biology and dysfunction. Cell Res. 2009;19(1):116–27.PubMedCrossRefGoogle Scholar
  81. 81.
    Pohlers D, et al. TGF-beta and fibrosis in different organs – molecular pathway imprints. Biochim Biophys Acta. 2009;1792(8):746–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Thannickal VJ, et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem. 2003;278(14):12384–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Shi X, et al. TGF-beta/Smad3 stimulates stem cell/developmental gene expression and vascular smooth muscle cell de-differentiation. PLoS One. 2014;9(4):e93995.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Zhu Y, et al. Restenosis inhibition and re-differentiation of TGFbeta/Smad3-activated smooth muscle cells by resveratrol. Sci Rep. 2017;7:41916.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Risinger GM Jr, et al. TGF-beta suppresses the upregulation of MMP-2 by vascular smooth muscle cells in response to PDGF-BB. Am J Phys Cell Phys. 2010;298(1):C191–201.CrossRefGoogle Scholar
  86. 86.
    Kundi R, et al. Arterial gene transfer of the TGF-beta signalling protein Smad3 induces adaptive remodelling following angioplasty: a role for CTGF. Cardiovasc Res. 2009;84(2):326–35.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Rakugi H, et al. Induction of angiotensin converting enzyme in the neointima after vascular injury. Possible role in restenosis. J Clin Invest. 1994;93(1):339–46.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Krege JH, et al. Angiotensin-converting enzyme gene and atherosclerosis. Arterioscler Thromb Vasc Biol. 1997;17(7):1245–50.PubMedGoogle Scholar
  89. 89.
    Ford CM, Li S, Pickering JG. Angiotensin II stimulates collagen synthesis in human vascular smooth muscle cells. Involvement of the AT(1) receptor, transforming growth factor-beta, and tyrosine phosphorylation. Arterioscler Thromb Vasc Biol. 1999;19(8):1843–51.PubMedCrossRefGoogle Scholar
  90. 90.
    Clempus RE, Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res. 2006;71(2):216–25.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wynne BM, Chiao CW, Webb RC. Vascular smooth muscle cell signaling mechanisms for contraction to angiotensin II and endothelin-1. J Am Soc Hypertens. 2009;3(2):84–95.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sriramula S, Francis J. Tumor necrosis factor – alpha is essential for angiotensin II-induced ventricular remodeling: role for oxidative stress. PLoS One. 2015;10(9):e0138372.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    van Thiel BS, et al. The renin-angiotensin system and its involvement in vascular disease. Eur J Pharmacol. 2015;763(Pt A):3–14.PubMedCrossRefGoogle Scholar
  94. 94.
    Gerritsen KG, et al. Plasma CTGF is independently related to an increased risk of cardiovascular events and mortality in patients with atherosclerotic disease: the SMART study. Growth Factors. 2016;34(3–4):149–58.PubMedCrossRefGoogle Scholar
  95. 95.
    Leeuwis JW, et al. Connective tissue growth factor is associated with a stable atherosclerotic plaque phenotype and is involved in plaque stabilization after stroke. Stroke. 2010;41(12):2979–81.PubMedCrossRefGoogle Scholar
  96. 96.
    Jiang Z, et al. TGF-beta- and CTGF-mediated fibroblast recruitment influences early outward vein graft remodeling. Am J Physiol Heart Circ Physiol. 2007;293(1):H482–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Rectenwald JE, et al. Direct evidence for cytokine involvement in neointimal hyperplasia. Circulation. 2000;102(14):1697–702.PubMedCrossRefGoogle Scholar
  98. 98.
    Jiang Z, et al. Tumor necrosis factor-alpha and the early vein graft. J Vasc Surg. 2007;45(1):169–76.PubMedCrossRefGoogle Scholar
  99. 99.
    Wang W, et al. SIRT1 inhibits TNF-alpha-induced apoptosis of vascular adventitial fibroblasts partly through the deacetylation of FoxO1. Apoptosis. 2013;18(6):689–701.PubMedCrossRefGoogle Scholar
  100. 100.
    Ali MS, et al. TNF-alpha induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology. J Cereb Blood Flow Metab. 2013;33(10):1564–73.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zhang H, et al. Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond). 2009;116(3):219–30.CrossRefGoogle Scholar
  102. 102.
    Fang L, Murphy AJ, Dart AM. A clinical perspective of anti-fibrotic therapies for cardiovascular disease. Front Pharmacol. 2017;8:186.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Janic M, Lunder M, Sabovic M. Arterial stiffness and cardiovascular therapy. Biomed Res Int. 2014;2014:621437.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Tam LS, et al. Infliximab is associated with improvement in arterial stiffness in patients with early rheumatoid arthritis – a randomized trial. J Rheumatol. 2012;39(12):2267–75.PubMedCrossRefGoogle Scholar
  105. 105.
    Di Micco P, et al. Intima-media thickness evolution after treatment with infliximab in patients with rheumatoid arthritis. Int J Gen Med. 2009;2:141–4.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rosenbloom J, Mendoza FA, Jimenez SA. Strategies for anti-fibrotic therapies. Biochim Biophys Acta. 2013;1832(7):1088–103.PubMedCrossRefGoogle Scholar
  107. 107.
    Chung IM, et al. Blockade of TGF-beta by catheter-based local intravascular gene delivery does not alter the in-stent neointimal response, but enhances inflammation in pig coronary arteries. Int J Cardiol. 2010;145(3):468–75.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Appleby CE, et al. Periluminal expression of a secreted transforming growth factor-beta type II receptor inhibits in-stent neointima formation following adenovirus-mediated stent-based intracoronary gene transfer. Hum Gene Ther. 2014;25(5):443–51.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Lipson KE, et al. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S24.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    West NE, et al. Nitric oxide synthase (nNOS) gene transfer modifies venous bypass graft remodeling: effects on vascular smooth muscle cell differentiation and superoxide production. Circulation. 2001;104(13):1526–32.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Nakao A, et al. Ex vivo carbon monoxide delivery inhibits intimal hyperplasia in arterialized vein grafts. Cardiovasc Res. 2011;89(2):457–63.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Rosenbaum MA, et al. Antioxidant therapy reverses impaired graft healing in hypercholesterolemic rabbits. J Vasc Surg. 2010;51(1):184–93.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zhong L, et al. The anti-fibrotic effect of bone morphogenic protein-7(BMP-7) on liver fibrosis. Int J Med Sci. 2013;10(4):441–50.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wang C, et al. The anti-fibrotic actions of relaxin are mediated through a NO-sGC-cGMP-dependent pathway in renal myofibroblasts in vitro and enhanced by the NO donor, Diethylamine NONOate. Front Pharmacol. 2016;7:91.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Brookes E, Shi Y. Diverse epigenetic mechanisms of human disease. Annu Rev Genet. 2014;48:237–68.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Gao P, et al. Upregulation of MicroRNA-15a contributes to pathogenesis of abdominal aortic aneurysm (AAA) by modulating the expression of cyclin-dependent kinase inhibitor 2B (CDKN2B). Med Sci Monit. 2017;23:881–8.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Maegdefessel L, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4(122):122ra22.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Maegdefessel L, et al. miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat Commun. 2014;5:5214.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Boon RA, et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res. 2011;109(10):1115–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Eken SM, et al. MicroRNA-210 enhances fibrous cap stability in advanced atherosclerotic lesions. Circ Res. 2017;120(4):633–44.PubMedCrossRefGoogle Scholar
  122. 122.
    Ji R, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007;100(11):1579–88.PubMedCrossRefGoogle Scholar
  123. 123.
    Yang J, et al. MicroRNA-24 attenuates neointimal hyperplasia in the diabetic rat carotid artery injury model by inhibiting Wnt4 signaling pathway. Int J Mol Sci. 2016;17(6):765.PubMedCentralCrossRefPubMedGoogle Scholar
  124. 124.
    Lee J, et al. MicroRNA-29b inhibits migration and proliferation of vascular smooth muscle cells in neointimal formation. J Cell Biochem. 2015;116(4):598–608.PubMedCrossRefGoogle Scholar
  125. 125.
    Cordes KR, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–10.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Zheng L, et al. MicroRNA-155 regulates angiotensin II type 1 receptor expression and phenotypic differentiation in vascular adventitial fibroblasts. Biochem Biophys Res Commun. 2010;400(4):483–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Connelly JJ, et al. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Hum Mol Genet. 2013;22(25):5107–20.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Narayanan N, et al. Epigenetic regulation of aortic remodeling in hyperhomocysteinemia. FASEB J. 2014;28(8):3411–22.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Liu R, et al. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation. 2013;128(18):2047–57.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Yoshida T, Owens GK. Molecular determinants of vascular smooth muscle cell diversity. Circ Res. 2005;96(3):280–91.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Hoeksema MA, et al. Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol Med. 2014;6(9):1124–32.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ding N, et al. BRD4 is a novel therapeutic target for liver fibrosis. Proc Natl Acad Sci U S A. 2015;112(51):15713–8.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Tang X, et al. BET bromodomain proteins mediate downstream signaling events following growth factor stimulation in human lung fibroblasts and are involved in bleomycin-induced pulmonary fibrosis. Mol Pharmacol. 2013;83(1):283–93.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Kumar K, et al. BET inhibitors block pancreatic stellate cell collagen I production and attenuate fibrosis in vivo. JCI Insight. 2017;2(3):e88032.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Anand P, et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell. 2013;154(3):569–82.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Wang B, et al. BET Bromodomain blockade mitigates intimal hyperplasia in rat carotid arteries. EBioMedicine. 2015;2(11):1650–61.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mengxue Zhang
    • 1
  • Bowen Wang
    • 1
    • 2
  • K. Craig Kent
    • 2
  • Lian-Wang Guo
    • 1
    • 2
    • 3
    Email author
  1. 1.Davis Heart and Lung Research Institute, Wexner Medical CenterThe Ohio State UniversityColumbusUSA
  2. 2.Department of Surgery, College of MedicineThe Ohio State UniversityColumbusUSA
  3. 3.Department of Physiology and Cell Biology, College of MedicineThe Ohio State UniversityColumbusUSA

Personalised recommendations