Advertisement

Using Peptidomics to Identify Extracellular Matrix-Derived Peptides as Novel Therapeutics for Cardiac Disease

  • Lisandra E. de Castro Brás
  • Merry L. Lindsey
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Peptidomics involves the analysis of endogenous peptides from biological samples; this analysis can be used both to catalog peptides present at a time point and to compare peptide levels across samples. During cardiac injury, there is extensive extracellular matrix (ECM) protein turnover as ECM is degraded to clear damaged/necrotic cells and de novo ECM is synthesized during myocardial regeneration and remodeling. These processes generate numerous endogenous peptides that are often biologically active and can be used as biomarkers, cellular modulators, and even as tools to assess response to therapy. The analysis of the cardiac or systemic ECM peptidome is important for a complete understanding of myocardial remodeling and is an exciting avenue to identify novel mechanisms to limit adverse cardiac remodeling and progression to heart failure.

Keywords

Extracellular matrix Peptides Peptidome Peptidomics Cardiac Heart failure Myocardial infarction 

Notes

Acknowledgments

This work was supported by the American Heart Association 14SDG18860050; by the National Institute of Health HL075360, HL129823, HL051971, GM114833, GM115428, and GM104357; and by the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development Award 5I01BX000505.

References

  1. 1.
    Dallas DC, Guerrero A, Khaldi N, Borghese R, Bhandari A, Underwood MA, Lebrilla CB, German JB, Barile D. A peptidomic analysis of human milk digestion in the infant stomach reveals protein-specific degradation patterns. J Nutr. 2014;144(6):815–20.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Boutrou R, Gaudichon C, Dupont D, Jardin J, Airinei G, Marsset-Baglieri A, Benamouzig R, Tome D, Leonil J. Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am J Clin Nutr. 2013;97(6):1314–23.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bouzerzour K, Morgan F, Cuinet I, Bonhomme C, Jardin J, Le Huerou-Luron I, Dupont D. In vivo digestion of infant formula in piglets: protein digestion kinetics and release of bioactive peptides. Br J Nutr. 2012;108(12):2105–14.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Sarethy IP. Plant peptides: bioactivity, opportunities and challenges. Protein Pept Lett. 2017;24(2):102–8.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Iloro I, Gonzalez E, Gutierrez-de Juan V, Mato JM, Falcon-Perez JM, Elortza F. Non-invasive detection of drug toxicity in rats by solid-phase extraction and MALDI-TOF analysis of urine samples. Anal Bioanal Chem. 2013;405(7):2311–20.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Fredolini C, Meani F, Luchini A, Zhou W, Russo P, Ross M, Patanarut A, Tamburro D, Gambara G, Ornstein D, Odicino F, Ragnoli M, Ravaggi A, Novelli F, Collura D, D'Urso L, Muto G, Belluco C, Pecorelli S, Liotta L, Petricoin EF 3rd. Investigation of the ovarian and prostate cancer peptidome for candidate early detection markers using a novel nanoparticle biomarker capture technology. AAPS J. 2010;12(4):504–18.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Zurbig P, Dihazi H, Metzger J, Thongboonkerd V, Vlahou A. Urine proteomics in kidney and urogenital diseases: moving towards clinical applications. Proteomics Clin Appl. 2011;5(5–6):256–68.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ling XB, Sigdel TK, Lau K, Ying L, Lau I, Schilling J, Sarwal MM. Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection. J Am Soc Nephrol. 2010;21(4):646–53.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zimmerli LU, Schiffer E, Zurbig P, Good DM, Kellmann M, Mouls L, Pitt AR, Coon JJ, Schmieder RE, Peter KH, Mischak H, Kolch W, Delles C, Dominiczak AF. Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics. 2008;7(2):290–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fricker LD, Lim J, Pan H, Che FY. Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev. 2006;25(2):327–44.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Clynen E, De Loof A, Schoofs L. The use of peptidomics in endocrine research. Gen Comp Endocrinol. 2003;132(1):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ, Karger AD, Budnik BA, Rinn JL, Saghatelian A. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol. 2013;9(1):59–64.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Galindo MI, Pueyo JI, Fouix S, Bishop SA, Couso JP. Peptides encoded by short ORFs control development and define a new eukaryotic gene family. PLoS Biol. 2007;5(5):e106.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Robinson MM, Dasari S, Karakelides H, Bergen HR 3rd, Nair KS. Release of skeletal muscle peptide fragments identifies individual proteins degraded during insulin deprivation in type 1 diabetic humans and mice. Am J Physiol Endocrinol Metab. 2016;311(3):E628–37.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Berezniuk I, Sironi J, Callaway MB, Castro LM, Hirata IY, Ferro ES, Fricker LD. CCP1/Nna1 functions in protein turnover in mouse brain: implications for cell death in Purkinje cell degeneration mice. FASEB J. 2010;24(6):1813–23.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Carleo A, Chorostowska-Wynimko J, Koeck T, Mischak H, Czajkowska-Malinowska M, Rozy A, Welte T, Janciauskiene S. Does urinary peptide content differ between COPD patients with and without inherited alpha-1 antitrypsin deficiency? Int J Chron Obstruct Pulmon Dis. 2017;12:829–37.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cafe-Mendes CC, Ferro ES, Torrao AS, Crunfli F, Rioli V, Schmitt A, Falkai P, Britto LR, Turck CW, Martins-de-Souza D. Peptidomic analysis of the anterior temporal lobe and corpus callosum from schizophrenia patients. J Proteome. 2017;151:97–105.CrossRefGoogle Scholar
  18. 18.
    Verhaert PD, Pinkse MW, Prieto‐Conaway MC, and Kellmann M. A short history of insect (Neuro)peptidomics—a personal story of the birth and youth of an excellent model for studying peptidome biology. In Peptidomics (eds M. Soloviev, C. Shaw and P. Andrén). Wiley: New Jersey. 2007:25–54.Google Scholar
  19. 19.
    Willey JM, van der Donk WA. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007;61:477–501.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Challis GL, Naismith JH. Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol. 2004;14(6):748–56.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Li Y, Li Y, Chen T, Kuklina AS, Bernard P, Esteva FJ, Shen H, Ferrari M, Hu Y. Circulating proteolytic products of carboxypeptidase N for early detection of breast Cancer. Clin Chem. 2014;60(1):233–42.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nah D-Y, Rhee M-Y. The inflammatory response and cardiac repair after myocardial infarction. Korean Circ J. 2009;39(10):393–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Jourdan-LeSaux C, Zhang J, Lindsey ML. Extracellular matrix roles during cardiac repair. Life Sci. 2010;87(13–14):391–400.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lindsey ML, Hall ME, Harmancey R, Ma Y. Adapting extracellular matrix proteomics for clinical studies on cardiac remodeling post-myocardial infarction. Clin Proteomics. 2016;13(1):19.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan J, German JB, Barile D, Lebrilla CB. Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics. 2015;15(0):1026–38.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lindsey ML, Iyer RP, Zamilpa R, Yabluchanskiy A, DeLeon-Pennell KY, Hall ME, Kaplan A, Zouein FA, Bratton D, Flynn ER, Cannon PL, Tian Y, Jin YF, Lange RA, Tokmina-Roszyk D, Fields GB, de Castro Brás LE, Novel Collagen A. Matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol. 2015;66(12):1364–74.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mihardja SS, Gao D, Sievers RE, Fang Q, Feng J, Wang J, Vanbrocklin HF, Larrick JW, Huang M, Dae M, Lee RJ. Targeted in vivo extracellular matrix formation promotes neovascularization in a rodent model of myocardial infarction. PLoS One. 2010;5(4):e10384.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Koskimaki JE, Karagiannis ED, Rosca EV, Vesuna F, Winnard PT, Raman V, Bhujwalla ZM, Popel AS. Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia (New York, NY). 2009;11(12):1285–91.CrossRefGoogle Scholar
  29. 29.
    Yamamura K, Kibbey MC, Jun SH, Kleinman HK. Effect of Matrigel and laminin peptide YIGSR on tumor growth and metastasis. Semin Cancer Biol. 1993;4(4):259–65.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Yi M, Ruoslahti E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci USA. 2001;98(2):620–4.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zamilpa R, Lindsey ML. Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. J Mol Cell Cardiol. 2010;48(3):558–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Francis Stuart SD, De Jesus NM, Lindsey ML, Ripplinger CM. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol. 2016;91:114–22.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    De Jesus NM, Wang L, Herren AW, Wang J, Shenasa F, Bers DM, Lindsey ML, Ripplinger CM. Atherosclerosis exacerbates arrhythmia following myocardial infarction: role of myocardial inflammation. Heart Rhythm. 2015;12(1):169–78.PubMedCrossRefGoogle Scholar
  34. 34.
    Soloviev M, Shaw C, and Andrén P. Peptidomics: methods and applications. Wiley: New Jersey. 2007.Google Scholar
  35. 35.
    Finoulst I, Pinkse M, Van Dongen W, Verhaert P. Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. J Biomed Biotechnol. 2011;2011:14.CrossRefGoogle Scholar
  36. 36.
    Brange J, Langkjoer L. Insulin structure and stability. Pharm Biotechnol. 1993;5:315–50.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sisodia SS, Price DL. Role of the beta-amyloid protein in Alzheimer’s disease. FASEB J. 1995;9(5):366–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol. 2009;39(11):792–800.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lindsey ML, Gomes AV, Smith SV, de Castro Brás LE. How to design a cardiovascular proteomics experiment. In: Agnetti G, Lindsey ML, Foster DB, editors. Manual of cardiovascular proteomics. Cham: Springer International Publishing; 2016. p. 33–57.CrossRefGoogle Scholar
  40. 40.
    Schrader M, Schulz-Knappe P, Fricker LD. Historical perspective of peptidomics. EuPA Open Proteom. 2014;3:171–82.CrossRefGoogle Scholar
  41. 41.
    Hu L, Ye M, Zou H. Recent advances in mass spectrometry-based peptidome analysis. Expert Rev Proteomics. 2009;6(4):433–47.PubMedCrossRefGoogle Scholar
  42. 42.
    Sigdel TK, Nicora CD, Hsieh S-C, Dai H, Qian W-J, Camp DG, Sarwal MM. Optimization for peptide sample preparation for urine peptidomics. Clin Proteomics. 2014;11(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;785(2):263–75.PubMedCrossRefGoogle Scholar
  44. 44.
    Fukao Y, Yoshida M, Kurata R, Kobayashi M, Nakanishi M, Fujiwara M, Nakajima K, Ferjani A. Peptide separation methodologies for in-depth proteomics in Arabidopsis. Plant Cell Physiol. 2013;54(5):808–15.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Xu Y, Cao Q, Svec F, Frechet JM. Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides. Anal Chem. 2010;82(8):3352–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Liu T, Qian WJ, Strittmatter EF, Camp DG 2nd, Anderson GA, Thrall BD, Smith RD. High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Anal Chem. 2004;76(18):5345–53.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Grunert T, Pock K, Buchacher A, Allmaier G. Selective solid-phase isolation of methionine-containing peptides and subsequent matrix-assisted laser desorption/ionisation mass spectrometric detection of methionine- and of methionine-sulfoxide-containing peptides. Rapid Commun Mass Spectrom. 2003;17(16):1815–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Foettinger A, Leitner A, Lindner W. Selective enrichment of tryptophan-containing peptides from protein digests employing a reversible derivatization with malondialdehyde and solid-phase capture on hydrazide beads. J Proteome Res. 2007;6(9):3827–34.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zhang L, Zhao Q, Liang Z, Yang K, Sun L, Zhang L, Zhang Y. Synthesis of adenosine functionalized metal immobilized magnetic nanoparticles for highly selective and sensitive enrichment of phosphopeptides. Chem Commun (Camb). 2012;48(50):6274–6.CrossRefGoogle Scholar
  50. 50.
    Thingholm TE, Jorgensen TJ, Jensen ON, Larsen MR. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc. 2006;1(4):1929–35.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Li QR, Ning ZB, Tang JS, Nie S, Zeng R. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res. 2009;8(11):5375–81.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Batalha IL, Roque AC. Phosphopeptide enrichment using various magnetic nanocomposites: an overview. Methods Mol Biol. 2016;1355:193–209.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wada Y, Tajiri M, Yoshida S. Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem. 2004;76(22):6560–5.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S. Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Anal Biochem. 2009;395(2):178–88.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Neue K, Mormann M, Peter-Katalinic J, Pohlentz G. Elucidation of glycoprotein structures by unspecific proteolysis and direct nanoESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides. J Proteome Res. 2011;10(5):2248–60.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Zhao Y, Chen Y, Xiong Z, Sun X, Zhang Q, Gan Y, Zhang L, Zhang W. Synthesis of magnetic zwitterionic-hydrophilic material for the selective enrichment of N-linked glycopeptides. J Chromatogr A. 2017;1482:23–31.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Yu L, Li X, Guo Z, Zhang X, Liang X. Hydrophilic interaction chromatography based enrichment of glycopeptides by using click maltose: a matrix with high selectivity and glycosylation heterogeneity coverage. Chemistry (Weinheim an der Bergstrasse, Germany). 2009;15(46):12618–26.Google Scholar
  58. 58.
    Li J, Li X, Guo Z, Yu L, Zou L, Liang X. Click maltose as an alternative to reverse phase material for desalting glycopeptides. Analyst. 2011;136(19):4075–82.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Nishikaze T, Kawabata S, Tanaka K. Boron forms unexpected glycopeptide derivatives during MALDI-MS experiment. J Mass Spectrom: JMS. 2013;48(9):1005–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu L, Yu M, Zhang Y, Wang C, Lu H. Hydrazide functionalized core-shell magnetic nanocomposites for highly specific enrichment of N-glycopeptides. ACS Appl Mater Interfaces. 2014;6(10):7823–32.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tian Y, Koganti T, Yao Z, Cannon P, Shah P, Pietrovito L, Modesti A, Aiyetan P, DeLeon-Pennell K, Ma Y, Halade GV, Hicks C, Zhang H, Lindsey ML. Cardiac extracellular proteome profiling and membrane topology analysis using glycoproteomics. Proteomics Clin Appl. 2014;8(7–8):595–602.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    DeCoux A, Tian Y, DeLeon-Pennell KY, Nguyen NT, de Castro Brás LE, Flynn ER, Cannon PL, Griswold ME, Jin YF, Puskarich MA, Jones AE, Lindsey ML. Plasma Glycoproteomics reveals Sepsis outcomes linked to distinct proteins in common pathways. Crit Care Med. 2015;43(10):2049–58.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Iyer RP, de Castro Brás LE, Patterson NL, Bhowmick M, Flynn ER, Asher M, Cannon PL, Deleon-Pennell KY, Fields GB, Lindsey ML. Early matrix metalloproteinase-9 inhibition post-myocardial infarction worsens cardiac dysfunction by delaying inflammation resolution. J Mol Cell Cardiol. 2016;100:109–17.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sajid MS, Jabeen F, Hussain D, Ashiq MN, Najam-Ul-Haq M. Hydrazide-functionalized affinity on conventional support materials for glycopeptide enrichment. Anal Bioanal Chem. 2017;409(12):3135–43.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kaji H, Yamauchi Y, Takahashi N, Isobe T. Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc. 2006;1(6):3019–27.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kaji H, Isobe T. Stable isotope labeling of N-glycosylated peptides by enzymatic deglycosylation for mass spectrometry-based glycoproteomics. Methods Mol Biol. 2013;951:217–27.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Li L, Sweedler JV. Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Ann Rev Anal Chem (Palo Alto, Calif). 2008;1:451–83.CrossRefGoogle Scholar
  68. 68.
    Boonen K, Landuyt B, Baggerman G, Husson SJ, Huybrechts J, Schoofs L. Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J Sep Sci. 2008;31(3):427–45.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Verhaert P, Uttenweiler-Joseph S, de Vries M, Loboda A, Ens W, Standing KG. Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics. 2001;1(1):118–31.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Mohring T, Kellmann M, Jurgens M, Schrader M. Top-down identification of endogenous peptides up to 9 kDa in cerebrospinal fluid and brain tissue by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry. J Mass Spectrom: JMS. 2005;40(2):214–26.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Falth M, Skold K, Svensson M, Nilsson A, Fenyo D, Andren PE. Neuropeptidomics strategies for specific and sensitive identification of endogenous peptides. Mol Cell Proteomics. 2007;6(7):1188–97.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Huang NF, Yu J, Sievers R, Li S, Lee RJ. Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 2005;11(11–12):1860–6.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol. 2004;44(3):654–60.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials. 2009;30(5):751–6.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Mihardja SS, Yu J, Lee RJ. Extracellular matrix-derived peptides and myocardial repair. Cell Adhes Migr. 2011;5(2):111–3.CrossRefGoogle Scholar
  76. 76.
    Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, Kangawa K. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2005;45(4):608–16.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tokudome T, Horio T, Soeki T, Mori K, Kishimoto I, Suga S-i, Yoshihara F, Kawano Y, Kohno M, Kangawa K. Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and Endothelin-1 signaling pathways. Endocrinology. 2004;145(5):2131–40.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, Kojima M, Kawano Y, Kangawa K. Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology. 2003;144(6):2279–84.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Nagaya N, Uematsu M, Kojima M, Ikeda Y, Yoshihara F, Shimizu W, Hosoda H, Hirota Y, Ishida H, Mori H, Kangawa K. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation. 2001;104(12):1430–5.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Nagaya N, Miyatake K, Uematsu M, Oya H, Shimizu W, Hosoda H, Kojima M, Nakanishi N, Mori H, Kangawa K. Hemodynamic, renal, and hormonal effects of ghrelin infusion in patients with chronic heart failure. J Clin Endocrinol Metab. 2001;86(12):5854–9.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Beiert T, Tiyerili V, Knappe V, Effelsberg V, Linhart M, Stockigt F, Klein S, Schierwagen R, Trebicka J, Nickenig G, Schrickel JW, Andrie RP. Relaxin reduces susceptibility to post-infarct atrial fibrillation in mice due to anti-fibrotic and anti-inflammatory properties. Biochem Biophys Res Commun. 2017;490(3):643–9.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Samuel CS, Cendrawan S, Gao XM, Ming Z, Zhao C, Kiriazis H, Xu Q, Tregear GW, Bathgate RA, Du XJ. Relaxin remodels fibrotic healing following myocardial infarction. Lab Investig. 2011;91(5):675–90.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Espinoza L, Jaynes J, Bodnar R, Willis MS, Yates CC. Inhibiting cardiac fibrosis in myocardial infarction by CXCL10 agonist peptide. FASEB J. 2016;30(1 Supplement):1178.1.Google Scholar
  84. 84.
    Pleasant-Jenkins D, Reese C, Chinnakkannu P, Kasiganesan H, Tourkina E, Hoffman S, Kuppuswamy D. Reversal of maladaptive fibrosis and compromised ventricular function in the pressure overloaded heart by a caveolin-1 surrogate peptide. Lab Investig. 2017;97(4):370–82.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 2017;38(4):406–24.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Jortani SA, Prabhu SD, Valdes R Jr. Strategies for developing biomarkers of heart failure. Clin Chem. 2004;50(2):265–78.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Dharmarajan K, Rich MW. Epidemiology, pathophysiology, and prognosis of heart failure in older adults. Heart Fail Clin. 2017;13(3):417–26.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Sun RR, Lu L, Liu M, Cao Y, Li XC, Liu H, Wang J, Zhang PY. Biomarkers and heart disease. Eur Rev Med Pharmacol Sci. 2014;18(19):2927–35.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Gaggin HK, Januzzi JL. Biomarkers and diagnostics in heart failure. Biochim Biophys Acta (BBA) – Mol Basis Dis. 2013;1832(12):2442–50.CrossRefGoogle Scholar
  91. 91.
    Gaggin HK, Januzzi JL Jr. Natriuretic peptides in heart failure and acute coronary syndrome. Clin Lab Med. 2014;34(1):43–58, vi.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Lopes D, Menezes Falcao L. Mid-regional pro-adrenomedullin and ST2 in heart failure: contributions to diagnosis and prognosis. Revista portuguesa de cardiologia: orgao oficial da Sociedade Portuguesa de Cardiologia = Port J Cardiol: Off J Port Soc Cardiol. 2017;36(6):465–72.Google Scholar
  93. 93.
    Teerlink JR. Endothelins: pathophysiology and treatment implications in chronic heart failure. Curr Heart Fail Rep. 2005;2(4):191–7.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Agnello L, Bivona G, Lo Sasso B, Scazzone C, Bazan V, Bellia C, Ciaccio M. Galectin-3 in acute coronary syndrome. Clin Biochem. 2017;50(13–14):797–803.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Westermann D, Neumann JT, Sorensen NA, Blankenberg S. High-sensitivity assays for troponin in patients with cardiac disease. Nat Rev Cardiol. 2017;14(8):472–83.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Lin TE, Adams KF Jr, Patterson JH. Potential roles of vaptans in heart failure: experience from clinical trials and considerations for optimizing therapy in target patients. Heart Fail Clin. 2014;10(4):607–20.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Amin HZ, Amin LZ, Wijaya IP. Galectin-3: a novel biomarker for the prognosis of heart failure. Clujul Med (1957). 2017;90(2):129–32.CrossRefGoogle Scholar
  98. 98.
    de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11(9):811–7.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Singh M, Dalal S, Singh K. Osteopontin: at the cross-roads of myocyte survival and myocardial function. Life Sci. 2014;118(1):1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lok DJ, Lok SI, de la Porte PWB-A, Badings E, Lipsic E, van Wijngaarden J, de Boer RA, van Veldhuisen DJ, van der Meer P. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013;102(2):103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Pascual-Figal DA, Januzzi JL. The biology of ST2: the international ST2 consensus panel. Am J Cardiol. 2015;115(7 Suppl):3b–7b.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Malek F, Vondrakova D, Neuzil P. Role of soluble receptor ST2 measurement in diagnosis and prognostic stratification in patients with heart failure. Vnitrni lekarstvi. 2015;61(12):1039–41.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Januzzi JL, Mebazaa A, Di Somma S. ST2 and prognosis in acutely decompensated heart failure: the international ST2 consensus panel. Am J Cardiol. 2015;115(7 Suppl):26b–31b.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon J, Lee RT. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail. 2009;2(6):684–91.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Januzzi JL Jr, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, O'Donoghue M, Sakhuja R, Chen AA, van Kimmenade RR, Lewandrowski KB, Lloyd-Jones DM, Wu AH. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (pro-brain natriuretic peptide investigation of dyspnea in the emergency department) study. J Am Coll Cardiol. 2007;50(7):607–13.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J, Maisel AS, Fitzgerald RL. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J Card Fail. 2008;14(9):732–8.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Rehman SU, Mueller T, Januzzi JL Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52(18):1458–65.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Manzano-Fernandez S, Mueller T, Pascual-Figal D, Truong QA, Januzzi JL. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am J Cardiol. 2011;107(2):259–67.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Henry-Okafor Q, Collins SP, Jenkins CA, Miller KF, Maron DJ, Naftilan AJ, Weintraub N, Fermann GJ, McPherson J, Menon S, Sawyer DB, Storrow AB. Soluble ST2 as a diagnostic and prognostic marker for acute heart failure syndromes. Open Biomark J. 2012;2012(5):1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Skau E, Henriksen E, Wagner P, Hedberg P, Siegbahn A, Leppert J. GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction. Eur J Prev Cardiol. 2017;24:1576.  https://doi.org/10.1177/2047487317725017.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Shemisa K, Bhatt A, Cheeran D, Neeland IJ. Novel biomarkers of subclinical cardiac dysfunction in the general population. Curr Heart Fail Rep. 2017;14(4):301–10.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Chan MMY, Santhanakrishnan R, Chong JPC, Chen Z, Tai BC, Liew OW, Ng TP, Ling LH, Sim D, Leong KTG, Yeo PSD, Ong H-Y, Jaufeerally F, Wong RC-C, Chai P, Low AF, Richards AM, Lam CSP. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2016;18(1):81–8.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Lofsjogard J, Kahan T, Diez J, Lopez B, Gonzalez A, Ravassa S, Mejhert M, Edner M, Persson H. Usefulness of collagen carboxy-terminal propeptide and telopeptide to predict disturbances of long-term mortality in patients >/=60 years with heart failure and reduced ejection fraction. Am J Cardiol. 2017;119(12):2042–8.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Lipczynska M, Szymanski P, Kumor M, Klisiewicz A, Hoffman P. Collagen turnover biomarkers and systemic right ventricle remodeling in adults with previous atrial switch procedure for transposition of the great arteries. PLoS One. 2017;12(8):e0180629.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Liu JH, Chen Y, Zhen Z, Ho LM, Tsang A, Yuen M, Lam K, Tse HF, Yiu KH. Relationship of biomarkers of extracellular matrix with myocardial function in type 2 diabetes mellitus. Biomark Med. 2017;11(7):569–78.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol. 2010;48(3):504–11.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Cheng CW, Wang CH, Lee JF, Kuo LT, Cherng WJ. Levels of blood periostin decrease after acute myocardial infarction and are negatively associated with ventricular function after 3 months. J Investig Med. 2012;60(2):523–8.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Kuhn B, del Monte F, Hajjar RJ, Chang Y-S, Lebeche D, Arab S, Keating MT. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–9.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Okamoto H, Imanaka-Yoshida K. Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther. 2012;30(4):e198–209.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Lindsey ML, Zouein FA, Tian Y, Padmanabhan Iyer R, de Castro Bras LE. Osteopontin is proteolytically processed by matrix metalloproteinase 9. Can J Physiol Pharmacol. 2015;93(10):879–86.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hou ZH, Lu B, Gao Y, Cao HL, Yu FF, Jing N, Chen X, Cong XF, Roy SK, Budoff MJ. Matrix metalloproteinase-9 (MMP-9) and myeloperoxidase (MPO) levels in patients with nonobstructive coronary artery disease detected by coronary computed tomographic angiography. Acad Radiol. 2013;20(1):25–31.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Valiente-Alandi I, Schafer AE, Blaxall BC. Extracellular matrix-mediated cellular communication in the heart. J Mol Cell Cardiol. 2016;91:228–37.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Kirk JA, Cingolani OH. Thrombospondins in the transition from myocardial infarction to heart failure. J Mol Cell Cardiol. 2016;90:102–10.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Schellings MW, van Almen GC, Sage EH, Heymans S. Thrombospondins in the heart: potential functions in cardiac remodeling. J Cell Commun Signal. 2009;3(3–4):201–13.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hugo CP, Pichler RP, Schulze-Lohoff E, Prols F, Adler S, Krutsch HC, Murphy-Ullrich JE, Couser WG, Roberts DD, Johnson RJ. Thrombospondin peptides are potent inhibitors of mesangial and glomerular endothelial cell proliferation in vitro and in vivo. Kidney Int. 1999;55(6):2236–49.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Rabhi-Sabile S, Thibert V, Legrand C. Thrombospondin peptides inhibit the secretion-dependent phase of platelet aggregation. Blood Coagul Fibrinolysis: Int J Haemost Thromb. 1996;7(2):237–40.CrossRefGoogle Scholar
  127. 127.
    Kaiser R, Frantz C, Bals R, Wilkens H. The role of circulating thrombospondin-1 in patients with precapillary pulmonary hypertension. Respir Res. 2016;17(1):96.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Belmadani S, Bernal J, Wei C-C, Pallero MA, Dell’Italia L, Murphy-Ullrich JE, Berecek KH. A Thrombospondin-1 antagonist of transforming growth factor-β activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II. Am J Pathol. 2007;171(3):777–89.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lisandra E. de Castro Brás
    • 1
  • Merry L. Lindsey
    • 2
    • 3
  1. 1.Department of PhysiologyBrody School of Medicine, East Carolina UniversityGreenvilleUSA
  2. 2.Mississippi Center for Heart Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonUSA
  3. 3.Research ServiceG.V. (Sonny) Montgomery Veterans Affairs Medical CenterJacksonUSA

Personalised recommendations