Advertisement

WNT Signaling and Cardiac Fibrosis

  • Gentian Lluri
  • Arjun Deb
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Wnt signaling plays multiple significant roles in cardiac development, injury, repair, and fibrosis. A good understanding of the signaling pathways involved in these processes is a necessary prerequisite in developing therapeutic approaches for different cardiovascular conditions. Our current understanding of these signaling pathways is described in this chapter.

Keywords

Wnt Fibrosis Canonical pathway Noncanonical pathway Beta-catenin 

References

  1. 1.
    Tao H, Yang JJ, Shi KH, Li J. Wnt signaling pathway in cardiac fibrosis: new insights and directions. Metabolism. 2016;65(2):30–40.  https://doi.org/10.1016/j.metabol.2015.10.013.CrossRefPubMedGoogle Scholar
  2. 2.
    Kawasaki T, Sakai C, Harimoto K, Yamano M, Miki S, Kamitani T. Usefulness of high-sensitivity cardiac troponin T and brain natriuretic peptide as biomarkers of myocardial fibrosis in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2013;112(6):867–72.  https://doi.org/10.1016/j.amjcard.2013.04.060.CrossRefPubMedGoogle Scholar
  3. 3.
    Masci PG, Doulaptsis C, Bertella E, Del Torto A, Symons R, Pontone G, Barison A, Droogne W, Andreini D, Lorenzoni V, Gripari P, Mushtaq S, Emdin M, Bogaert J, Lombardi M. Incremental prognostic value of myocardial fibrosis in patients with non-ischemic cardiomyopathy without congestive heart failure. Circ Heart Fail. 2014;7(3):448–56.  https://doi.org/10.1161/CIRCHEARTFAILURE.113.000996.CrossRefPubMedGoogle Scholar
  4. 4.
    Deb A. Cell-cell interaction in the heart via Wnt/beta-catenin pathway after cardiac injury. Cardiovasc Res. 2014;102(2):214–23.  https://doi.org/10.1093/cvr/cvu054. PubMed PMID: 24591151; PMCID: PMC3989450.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nusse R, Brown A, Papkoff J, Scambler P, Shackleford G, McMahon A, Moon R, Varmus H. A new nomenclature for int-1 and related genes: the Wnt gene family. Cell. 1991;64(2):231.CrossRefGoogle Scholar
  6. 6.
    Kadowaki T, Wilder E, Klingensmith J, Zachary K, Perrimon N. The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev. 1996;10(24):3116–28.CrossRefGoogle Scholar
  7. 7.
    Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281(32):22429–33.  https://doi.org/10.1074/jbc.R600015200.CrossRefPubMedGoogle Scholar
  8. 8.
    Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J. 2012;31(12):2714–36.  https://doi.org/10.1038/emboj.2012.150. PubMed PMID: 22617422; PMCID: PMC3380220.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Morris AJ, Malbon CC. Physiological regulation of G protein-linked signaling. Physiol Rev. 1999;79(4):1373–430.CrossRefGoogle Scholar
  10. 10.
    Wang HY, Liu T, Malbon CC. Structure-function analysis of Frizzleds. Cell Signal. 2006;18(7):934–41.  https://doi.org/10.1016/j.cellsig.2005.12.008.CrossRefPubMedGoogle Scholar
  11. 11.
    Cong F, Schweizer L, Varmus H. Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development. 2004;131(20):5103–15.  https://doi.org/10.1242/dev.01318.CrossRefPubMedGoogle Scholar
  12. 12.
    Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–205.  https://doi.org/10.1016/j.cell.2012.05.012.CrossRefPubMedGoogle Scholar
  13. 13.
    MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol. 2012;4(12).  https://doi.org/10.1101/cshperspect.a007880. PubMed PMID: 23209147; PMCID: PMC3504444.CrossRefGoogle Scholar
  14. 14.
    Jamieson C, Sharma M, Henderson BR. Targeting the beta-catenin nuclear transport pathway in cancer. Semin Cancer Biol. 2014;27:20–9.  https://doi.org/10.1016/j.semcancer.2014.04.012.CrossRefPubMedGoogle Scholar
  15. 15.
    Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996;86(3):391–9.CrossRefGoogle Scholar
  16. 16.
    Kikuchi A, Yamamoto H, Kishida S. Multiplicity of the interactions of Wnt proteins and their receptors. Cell Sig. 2007;19(4):659–71.  https://doi.org/10.1016/j.cellsig.2006.11.001.CrossRefGoogle Scholar
  17. 17.
    Forrester WC, Dell M, Perens E, Garriga G. A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature. 1999;400(6747):881–5.  https://doi.org/10.1038/23722.CrossRefPubMedGoogle Scholar
  18. 18.
    De A. Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai). 2011;43(10):745–56.  https://doi.org/10.1093/abbs/gmr079.CrossRefGoogle Scholar
  19. 19.
    Zaslavsky A, Chou ST, Schadler K, Lieberman A, Pimkin M, Kim YJ, Baek KH, Aird WC, Weiss MJ, Ryeom S. The calcineurin-NFAT pathway negatively regulates megakaryopoiesis. Blood. 2013;121(16):3205–15.  https://doi.org/10.1182/blood-2012-04-421172. PubMed PMID: 23446734; PMCID: PMC3630833.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schuetze KB, McKinsey TA, Long CS. Targeting cardiac fibroblasts to treat fibrosis of the heart: focus on HDACs. J Mol Cell Cardiol. 2014;70:100–7.  https://doi.org/10.1016/j.yjmcc.2014.02.015. PubMed PMID: 24631770; PMCID: PMC4080911.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Deb A, Ubil E. Cardiac fibroblast in development and wound healing. J Mol Cell Cardiol. 2014;70:47–55.  https://doi.org/10.1016/j.yjmcc.2014.02.017. PubMed PMID: 24625635; PMCID: PMC4028446.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen W, Frangogiannis NG. Fibroblasts in post-infarction inflammation and cardiac repair. Biochim Biophys Acta. 2013;1833(4):945–53.  https://doi.org/10.1016/j.bbamcr.2012.08.023. PubMed PMID: 22982064; PMCID: PMC3541439.CrossRefPubMedGoogle Scholar
  23. 23.
    Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–74.  https://doi.org/10.1007/s00018-013-1349-6. PubMed PMID: 23649149; PMCID: PMC3769482.CrossRefPubMedGoogle Scholar
  24. 24.
    Sullivan KE, Black LD. The role of cardiac fibroblasts in extracellular matrix-mediated signaling during normal and pathological cardiac development. J Biomech Eng. 2013;135(7):71001.  https://doi.org/10.1115/1.4024349.CrossRefPubMedGoogle Scholar
  25. 25.
    White HD, Chew DP. Acute myocardial infarction. Lancet. 2008;372(9638):570–84.  https://doi.org/10.1016/S0140-6736(08)61237-4.CrossRefPubMedGoogle Scholar
  26. 26.
    Daskalopoulos EP, Janssen BJ, Blankesteijn WM. Myofibroblasts in the infarct area: concepts and challenges. Microsc Microanal. 2012;18(1):35–49.  https://doi.org/10.1017/S143192761101227X.CrossRefPubMedGoogle Scholar
  27. 27.
    van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J. Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2010;7(1):30–7.  https://doi.org/10.1038/nrcardio.2009.199.CrossRefPubMedGoogle Scholar
  28. 28.
    Hermans KC, Daskalopoulos EP, Blankesteijn WM. The Janus face of myofibroblasts in the remodeling heart. J Mol Cell Cardiol. 2016;91:35–41.  https://doi.org/10.1016/j.yjmcc.2015.11.017.CrossRefPubMedGoogle Scholar
  29. 29.
    Paik DT, Rai M, Ryzhov S, Sanders LN, Aisagbonhi O, Funke MJ, Feoktistov I, Hatzopoulos AK. Wnt10b gain-of-function improves cardiac repair by arteriole formation and attenuation of fibrosis. Circ Res. 2015;117(9):804–16.  https://doi.org/10.1161/CIRCRESAHA.115.306886. PubMed PMID: 26338900; PMCID: PMC4600464.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Morishita Y, Kobayashi K, Klyachko E, Jujo K, Maeda K, Losordo DW, Murohara T. Wnt11 gene therapy with adeno-associated virus 9 improves recovery from myocardial infarction by modulating the inflammatory response. Sci Rep. 2016;6:21705.  https://doi.org/10.1038/srep21705. PubMed PMID: 26882996; PMCID: PMC4756373.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I, Hatzopoulos AK. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech. 2011;4(4):469–83.  https://doi.org/10.1242/dmm.006510. PubMed PMID: 21324930; PMCID: PMC3124051.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mizutani M, Wu JC, Nusse R. Fibrosis of the neonatal mouse heart after cryoinjury is accompanied by Wnt signaling activation and epicardial-to-mesenchymal transition. J Am Heart Assoc. 2016;5(3):e002457.  https://doi.org/10.1161/JAHA.115.002457. PubMed PMID: 27068625; PMCID: PMC4943236.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Oikonomopoulos A, Sereti KI, Conyers F, Bauer M, Liao A, Guan J, Crapps D, Han JK, Dong H, Bayomy AF, Fine GC, Westerman K, Biechele TL, Moon RT, Force T, Liao R. Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3. Circ Res. 2011;109(12):1363–74.  https://doi.org/10.1161/CIRCRESAHA.111.250282. PubMed PMID: 22034491; PMCID: PMC3384997.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Malekar P, Hagenmueller M, Anyanwu A, Buss S, Streit MR, Weiss CS, Wolf D, Riffel J, Bauer A, Katus HA, Hardt SE. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension. 2010;55(4):939–45.  https://doi.org/10.1161/HYPERTENSIONAHA.109.141127.CrossRefPubMedGoogle Scholar
  35. 35.
    Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. 1999;341(17):1276–83.  https://doi.org/10.1056/NEJM199910213411706.CrossRefPubMedGoogle Scholar
  36. 36.
    He J, Cai Y, Luo LM, Wang R. Expression of Wnt and NCX1 and its correlation with cardiomyocyte apoptosis in mouse with myocardial hypertrophy. Asian Pac J Trop Med. 2015;8(11):930–6.  https://doi.org/10.1016/j.apjtm.2015.10.002.CrossRefPubMedGoogle Scholar
  37. 37.
    Hagenmueller M, Riffel JH, Bernhold E, Fan J, Katus HA, Hardt SE. Dapper-1 is essential for Wnt5a induced cardiomyocyte hypertrophy by regulating the Wnt/PCP pathway. FEBS Lett. 2014;588(14):2230–7.  https://doi.org/10.1016/j.febslet.2014.05.039.CrossRefPubMedGoogle Scholar
  38. 38.
    Hagenmueller M, Riffel JH, Bernhold E, Fan J, Zhang M, Ochs M, Steinbeisser H, Katus HA, Hardt SE. Dapper-1 induces myocardial remodeling through activation of canonical Wnt signaling in cardiomyocytes. Hypertension. 2013;61(6):1177–83.  https://doi.org/10.1161/HYPERTENSIONAHA.111.00391.CrossRefPubMedGoogle Scholar
  39. 39.
    Jin Y, Wang W, Chai S, Liu J, Yang T, Wang J. Wnt5a attenuates hypoxia-induced pulmonary arteriolar remodeling and right ventricular hypertrophy in mice. Exp Biol Med (Maywood). 2015;240(12):1742–51.  https://doi.org/10.1177/1535370215584889. PubMed PMID: 25956683; PMCID: PMC4935341.CrossRefGoogle Scholar
  40. 40.
    Blankesteijn WM, Essers-Janssen YP, Ulrich MM, Smits JF. Increased expression of a homologue of drosophila tissue polarity gene “frizzled” in left ventricular hypertrophy in the rat, as identified by subtractive hybridization. J Mol Cell Cardiol. 1996;28(5):1187–91.CrossRefGoogle Scholar
  41. 41.
    Cerutti C, Kurdi M, Bricca G, Hodroj W, Paultre C, Randon J, Gustin MP. Transcriptional alterations in the left ventricle of three hypertensive rat models. Physiol Genomics. 2006;27(3):295–308.  https://doi.org/10.1152/physiolgenomics.00318.2005.CrossRefPubMedGoogle Scholar
  42. 42.
    Alapati D, Rong M, Chen S, Lin C, Li Y, Wu S. Inhibition of LRP5/6-mediated Wnt/beta-catenin signaling by Mesd attenuates hyperoxia-induced pulmonary hypertension in neonatal rats. Pediatr Res. 2013;73(6):719–25.  https://doi.org/10.1038/pr.2013.42.CrossRefPubMedGoogle Scholar
  43. 43.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics C, Stroke Statistics S. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.  https://doi.org/10.1161/CIR.0000000000000485. PubMed PMID: 28122885; PMCID: PMC5408160.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bastakoty D, Saraswati S, Joshi P, Atkinson J, Feoktistov I, Liu J, Harris JL, Young PP. Temporary, systemic inhibition of the WNT/beta-catenin pathway promotes regenerative cardiac repair following myocardial infarct. Cell Stem Cells Regen Med. 2016;2(2).  https://doi.org/10.16966/2472-6990.111. PubMed PMID: 28042617; PMCID: PMC5193163.
  45. 45.
    Laeremans H, Hackeng TM, van Zandvoort MA, Thijssen VL, Janssen BJ, Ottenheijm HC, Smits JF, Blankesteijn WM. Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation. 2011;124(15):1626–35.  https://doi.org/10.1161/CIRCULATIONAHA.110.976969.CrossRefPubMedGoogle Scholar
  46. 46.
    Uitterdijk A, Hermans KC, de Wijs-Meijler DP, Daskalopoulos EP, Reiss IK, Duncker DJ, Matthijs Blankesteijn W, Merkus D. UM206, a selective frizzled antagonist, attenuates adverse remodeling after myocardial infarction in swine. Lab Investig. 2016;96(2):168–76.  https://doi.org/10.1038/labinvest.2015.139.CrossRefPubMedGoogle Scholar
  47. 47.
    Sklepkiewicz P, Shiomi T, Kaur R, Sun J, Kwon S, Mercer B, Bodine P, Schermuly RT, George I, Schulze PC, D’Armiento JM. Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy. Circ Heart Fail. 2015;8(2):362–72.  https://doi.org/10.1161/CIRCHEARTFAILURE.114.001274. PubMed PMID: 25669938; PMCID: PMC4405910.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Felkin LE, Lara-Pezzi EA, Hall JL, Birks EJ, Barton PJ. Reverse remodelling and recovery from heart failure are associated with complex patterns of gene expression. J Cardiovasc Transl Res. 2011;4(3):321–31.  https://doi.org/10.1007/s12265-011-9267-1.CrossRefPubMedGoogle Scholar
  49. 49.
    Schumann H, Holtz J, Zerkowski HR, Hatzfeld M. Expression of secreted frizzled related proteins 3 and 4 in human ventricular myocardium correlates with apoptosis related gene expression. Cardiovasc Res. 2000;45(3):720–8.CrossRefGoogle Scholar
  50. 50.
    Askevold ET, Aukrust P, Nymo SH, Lunde IG, Kaasboll OJ, Aakhus S, Florholmen G, Ohm IK, Strand ME, Attramadal H, Fiane A, Dahl CP, Finsen AV, Vinge LE, Christensen G, Yndestad A, Gullestad L, Latini R, Masson S, Tavazzi L, Investigators G-H, Ueland T. The cardiokine secreted frizzled-related protein 3, a modulator of Wnt signalling, in clinical and experimental heart failure. J Intern Med. 2014;275(6):621–30.  https://doi.org/10.1111/joim.12175.CrossRefPubMedGoogle Scholar
  51. 51.
    Askevold ET, Gullestad L, Nymo S, Kjekshus J, Yndestad A, Latini R, Cleland JG, McMurray JJ, Aukrust P, Ueland T. Secreted frizzled related protein 3 in chronic heart failure: analysis from the controlled rosuvastatin multinational trial in heart failure (CORONA). PLoS One. 2015;10(8):e0133970.  https://doi.org/10.1371/journal.pone.0133970. PubMed PMID: 26288364; PMCID: PMC4545831.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhang M, Hagenmueller M, Riffel JH, Kreusser MM, Bernhold E, Fan J, Katus HA, Backs J, Hardt SE. Calcium/calmodulin-dependent protein kinase II couples Wnt signaling with histone deacetylase 4 and mediates dishevelled-induced cardiomyopathy. Hypertension. 2015;65(2):335–44.  https://doi.org/10.1161/HYPERTENSIONAHA.114.04467.CrossRefPubMedGoogle Scholar
  53. 53.
    Zhou J, Ahmad F, Parikh S, Hoffman NE, Rajan S, Verma VK, Song J, Yuan A, Shanmughapriya S, Guo Y, Gao E, Koch W, Woodgett JR, Madesh M, Kishore R, Lal H, Force T. Loss of adult cardiac myocyte GSK-3 leads to mitotic catastrophe resulting in fatal dilated cardiomyopathy. Circ Res. 2016;118(8):1208–22.  https://doi.org/10.1161/CIRCRESAHA.116.308544. PubMed PMID: 26976650; PMCID: PMC4843504.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Braz JC, Gill RM, Corbly AK, Jones BD, Jin N, Vlahos CJ, Wu Q, Shen W. Selective activation of PI3Kalpha/Akt/GSK-3beta signalling and cardiac compensatory hypertrophy during recovery from heart failure. Eur J Heart Fail. 2009;11(8):739–48.  https://doi.org/10.1093/eurjhf/hfp094.CrossRefPubMedGoogle Scholar
  55. 55.
    Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation. 2001;103(5):670–7.CrossRefGoogle Scholar
  56. 56.
    Hou N, Ye B, Li X, Margulies KB, Xu H, Wang X, Li F. Transcription factor 7-like 2 mediates canonical Wnt/beta-catenin signaling and c-Myc upregulation in heart failure. Circ Heart Fail. 2016;9(6).  https://doi.org/10.1161/CIRCHEARTFAILURE.116.003010 e003010. PubMed PMID: 27301468; PMCID: PMC5060009.
  57. 57.
    Zheng Q, Chen P, Xu Z, Li F, Yi XP. Expression and redistribution of beta-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat. J Mol Histol. 2013;44(5):565–73.  https://doi.org/10.1007/s10735-013-9507-6.CrossRefPubMedGoogle Scholar
  58. 58.
    Vermij SH, Abriel H, van Veen TA. Refining the molecular organization of the cardiac intercalated disc. Cardiovasc Res. 2017;113(3):259–75.  https://doi.org/10.1093/cvr/cvw259.CrossRefPubMedGoogle Scholar
  59. 59.
    Patel DM, Green KJ. Desmosomes in the heart: a review of clinical and mechanistic analyses. Cell Commun Adhes. 2014;21(3):109–28.  https://doi.org/10.3109/15419061.2014.906533.CrossRefPubMedGoogle Scholar
  60. 60.
    Lo CW. Role of gap junctions in cardiac conduction and development: insights from the connexin knockout mice. Circ Res. 2000;87(5):346–8.CrossRefGoogle Scholar
  61. 61.
    Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI. Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest. 2000;105(2):161–71.  https://doi.org/10.1172/JCI7798. PubMed PMID: 10642594; PMCID: PMC377428.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Nakashima T, Ohkusa T, Okamoto Y, Yoshida M, Lee JK, Mizukami Y, Yano M. Rapid electrical stimulation causes alterations in cardiac intercellular junction proteins of cardiomyocytes. Am J Physiol Heart Circ Physiol. 2014;306(9):H1324–33.  https://doi.org/10.1152/ajpheart.00653.2013.CrossRefPubMedGoogle Scholar
  63. 63.
    Le Dour C, Macquart C, Sera F, Homma S, Bonne G, Morrow JP, Worman HJ, Muchir A. Decreased WNT/beta-catenin signalling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the lamin a/C gene. Hum Mol Genet. 2017;26(2):333–43.  https://doi.org/10.1093/hmg/ddw389.CrossRefPubMedGoogle Scholar
  64. 64.
    Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017;376(1):61–72.  https://doi.org/10.1056/NEJMra1509267.CrossRefPubMedGoogle Scholar
  65. 65.
    Corrado D, Basso C, Pilichou K, Thiene G. Molecular biology and clinical management of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart. 2011;97(7):530–9.  https://doi.org/10.1136/hrt.2010.193276.CrossRefPubMedGoogle Scholar
  66. 66.
    Sen-Chowdhry S, Syrris P, McKenna WJ. Genetics of right ventricular cardiomyopathy. J Cardiovasc Electrophysiol. 2005;16(8):927–35.  https://doi.org/10.1111/j.1540-8167.2005.40842.x.CrossRefPubMedGoogle Scholar
  67. 67.
    Basso C, Bauce B, Corrado D, Thiene G. Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol. 2011;9(4):223–33.  https://doi.org/10.1038/nrcardio.2011.173.CrossRefPubMedGoogle Scholar
  68. 68.
    Swope D, Cheng L, Gao E, Li J, Radice GL. Loss of cadherin-binding proteins beta-catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis. Mol Cell Biol. 2012;32(6):1056–67.  https://doi.org/10.1128/MCB.06188-11. PubMed PMID: 22252313; PMCID: PMC3295003.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, Marian AJ. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116(7):2012–21.  https://doi.org/10.1172/JCI27751. PubMed PMID: 16823493; PMCID: PMC1483165.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lombardi R, Dong J, Rodriguez G, Bell A, Leung TK, Schwartz RJ, Willerson JT, Brugada R, Marian AJ. Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res. 2009;104(9):1076–84.  https://doi.org/10.1161/CIRCRESAHA.109.196899. PubMed PMID: 19359597; PMCID: PMC2767296.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chelko SP, Asimaki A, Andersen P, Bedja D, Amat-Alarcon N, DeMazumder D, Jasti R, MacRae CA, Leber R, Kleber AG, Saffitz JE, Judge DP. Central role for GSK3beta in the pathogenesis of arrhythmogenic cardiomyopathy. JCI Insight. 2016;1(5).  https://doi.org/10.1172/jci.insight.85923. PubMed PMID: 27170944; PMCID: PMC4861310.
  72. 72.
    Schoen FJ. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118(18):1864–80.  https://doi.org/10.1161/CIRCULATIONAHA.108.805911.CrossRefPubMedGoogle Scholar
  73. 73.
    Hinton RB, Yutzey KE. Heart valve structure and function in development and disease. Annu Rev Physiol. 2011;73:29–46.  https://doi.org/10.1146/annurev-physiol-012110-142145. PubMed PMID: 20809794; PMCID: PMC4209403.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Mathieu P, Boulanger MC, Bouchareb R. Molecular biology of calcific aortic valve disease: towards new pharmacological therapies. Expert Rev Cardiovasc Ther. 2014;12(7):851–62.  https://doi.org/10.1586/14779072.2014.923756.CrossRefPubMedGoogle Scholar
  75. 75.
    Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55(25):2789–800.  https://doi.org/10.1016/j.jacc.2009.12.068.CrossRefPubMedGoogle Scholar
  76. 76.
    Liu X, Xu Z. Osteogenesis in calcified aortic valve disease: from histopathological observation towards molecular understanding. Prog Biophys Mol Biol. 2016;122(2):156–61.  https://doi.org/10.1016/j.pbiomolbio.2016.02.002.CrossRefPubMedGoogle Scholar
  77. 77.
    Robicsek F, Thubrikar MJ, Cook JW, Fowler B. The congenitally bicuspid aortic valve: how does it function? Why does it fail? Ann Thorac Surg. 2004;77(1):177–85.CrossRefGoogle Scholar
  78. 78.
    Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 2006;16(3):151–8.  https://doi.org/10.1016/j.tcb.2006.01.001.CrossRefPubMedGoogle Scholar
  79. 79.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML, Osteoporosis-Pseudoglioma Syndrome Collaborative G. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.CrossRefGoogle Scholar
  80. 80.
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.  https://doi.org/10.1056/NEJMoa013444.CrossRefPubMedGoogle Scholar
  81. 81.
    Rajamannan NM. Myxomatous mitral valve disease bench to bedside: LDL-density-pressure regulates Lrp5. Expert Rev Cardiovasc Ther. 2014;12(3):383–92.  https://doi.org/10.1586/14779072.2014.893191. PubMed PMID: 24575776; PMCID: PMC4048944.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Orton EC, Lacerda CM, MacLea HB. Signaling pathways in mitral valve degeneration. J Vet Cardiol. 2012;14(1):7–17.  https://doi.org/10.1016/j.jvc.2011.12.001.CrossRefPubMedGoogle Scholar
  83. 83.
    Fang M, Alfieri CM, Hulin A, Conway SJ, Yutzey KE. Loss of beta-catenin promotes chondrogenic differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol. 2014;34(12):2601–8.  https://doi.org/10.1161/ATVBAHA.114.304579. PubMed PMID: 25341799; PMCID: PMC4239156.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Hulin A, Moore V, James JM, Yutzey KE. Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease. Cardiovasc Res. 2017;113(1):40–51.  https://doi.org/10.1093/cvr/cvw229. PubMed PMID: 28069701; PMCID: PMC5220675.CrossRefPubMedGoogle Scholar
  85. 85.
    McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J, American College of Cardiology Foundation Task Force on Expert Consensus D, American Heart A, American College of Chest P, American Thoracic Society I, Pulmonary Hypertension A. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;53(17):1573–619.  https://doi.org/10.1016/j.jacc.2009.01.004.CrossRefPubMedGoogle Scholar
  86. 86.
    Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest. 2012;122(12):4306–13.  https://doi.org/10.1172/JCI60658. PubMed PMID: 23202738; PMCID: 3533531.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Laumanns IP, Fink L, Wilhelm J, Wolff JC, Mitnacht-Kraus R, Graef-Hoechst S, Stein MM, Bohle RM, Klepetko W, Hoda MA, Schermuly RT, Grimminger F, Seeger W, Voswinckel R. The noncanonical WNT pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2009;40(6):683–91.  https://doi.org/10.1165/rcmb.2008-0153OC.CrossRefPubMedGoogle Scholar
  88. 88.
    de Jesus Perez VA, Alastalo TP, Wu JC, Axelrod JD, Cooke JP, Amieva M, Rabinovitch M. Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-RhoA-Rac1 pathways. J Cell Biol. 2009;184(1):83–99.  https://doi.org/10.1083/jcb.200806049. PubMed PMID: 19139264; PMCID: PMC2615088.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Takahashi J, Orcholski M, Yuan K, de Jesus Perez V. PDGF-dependent beta-catenin activation is associated with abnormal pulmonary artery smooth muscle cell proliferation in pulmonary arterial hypertension. FEBS Lett. 2016;590(1):101–9.  https://doi.org/10.1002/1873-3468.12038. PubMed PMID: 26787464; PMCID: PMC4722963.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wu D, Talbot CC Jr, Liu Q, Jing ZC, Damico RL, Tuder R, Barnes KC, Hassoun PM, Gao L. Identifying microRNAs targeting Wnt/beta-catenin pathway in end-stage idiopathic pulmonary arterial hypertension. J Mol Med (Berl). 2016;94(8):875–85.  https://doi.org/10.1007/s00109-016-1426-z. PubMed PMID: 27188753; PMCID: PMC4956511.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medicine, Division of CardiologyUniversity of California–Los AngelesLos AngelesUSA
  2. 2.Department of Molecular, Cell, and Developmental Biology, Broad Stem Cell Research CenterUniversity of California–Los AngelesLos AngelesUSA

Personalised recommendations