Advertisement

Fibrotic Signaling in Cardiomyopathies

  • Saranya Ravi
  • Monte S. Willis
  • Jonathan C. Schisler
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Cardiomyopathies are a group of diseases characterized by abnormalities in structure and function of the heart muscles (Abelmann, Prog Cardiovasc Dis. 1984;27:73–94). The dysfunction of the myocardium leads to heart failure and arrhythmias. There are a variety of causes of cardiomyopathy including genetics, inflammation, hypertension, diabetes, ischemia, alcohol consumption, drugs, and infections among many other reasons (Abelmann, Prog Cardiovasc Dis. 1984;27:73–94). The definition of cardiomyopathy can vary and sometimes excludes ischemia and hypertension as underlying etiologies (Elliott et al. Eur Heart J. 2008;29:270–276). However, in this chapter, we will include ischemic and hypertensive disease in the definition of cardiomyopathy and focus on ischemia in describing the pathology of cardiomyopathy.

Keywords

Fibrosis Cardiomyopathy Ischemic heart disease Cardiomyocytes Cardiofibroblasts 

References

  1. 1.
    Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br Heart J. 1980;44(6):672–3.Google Scholar
  2. 2.
    Elliott P. Diagnosis and management of dilated cardiomyopathy. Heart. 2000;84(1):106.  https://doi.org/10.1136/heart.84.1.106.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Luk A, Ahn E, Soor GS, Butany J. Dilated cardiomyopathy: a review. J Clin Pathol. 2009;62(3):219–25.  https://doi.org/10.1136/jcp.2008.060731.CrossRefPubMedGoogle Scholar
  4. 4.
    Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman KL, Kasper EK. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84.  https://doi.org/10.1056/NEJM200004133421502.CrossRefPubMedGoogle Scholar
  5. 5.
    Abelmann WH, Lorell BH. The challenge of cardiomyopathy. J Am Coll Cardiol. 1989;13(6):1219–39.PubMedCrossRefGoogle Scholar
  6. 6.
    Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331(23):1564–75.  https://doi.org/10.1056/NEJM199412083312307.CrossRefPubMedGoogle Scholar
  7. 7.
    Francis GS. Pathophysiology of chronic heart failure. Am J Med. 2001;110(Suppl 7A):37S–46S.PubMedCrossRefGoogle Scholar
  8. 8.
    Anversa P, Olivetti G, Leri A, Liu Y, Kajstura J. Myocyte cell death and ventricular remodeling. Curr Opin Nephrol Hypertens. 1997;6(2):169–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335(16):1182–9.  https://doi.org/10.1056/NEJM199610173351603.CrossRefPubMedGoogle Scholar
  10. 10.
    Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med. 1997;336(16):1131–41.  https://doi.org/10.1056/NEJM199704173361603.CrossRefPubMedGoogle Scholar
  11. 11.
    Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Sonnenblick EH, Olivetti G, Anversa P. The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol. 1995;27(1):291–305.PubMedCrossRefGoogle Scholar
  12. 12.
    Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, Malec KB, McKeown PP, Schocken DD. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation. 1992;86(2):426–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Circ Res. 1995;77(5):863–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation. 1997;96(11):4065–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, Armstrong PW. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation. 1990;82(4):1387–401.PubMedCrossRefGoogle Scholar
  16. 16.
    Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res. 1993;27(3):341–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Weber KT, Pick R, Jalil JE, Janicki JS, Carroll EP. Patterns of myocardial fibrosis. J Mol Cell Cardiol. 1989;21(Suppl 5):121–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83(6):1849–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation. 1995;92(4):785–9.CrossRefGoogle Scholar
  20. 20.
    Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287(10):1308–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE, Shah PM, Spencer WH, Spirito P, Ten Cate FJ, Wigle ED, Task Force on Clinical Expert Consensus Documents, American College of Cardiology, and Committee for Practice Guidelines, European Society of Cardiology. American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy. A Report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol. 2003;42(9):1687–713.PubMedCrossRefGoogle Scholar
  22. 22.
    Braunwald E, Lambrew CT, Rockoff SD, Ross J, Morrow AG. Idiopathic hypertrophic subaortic stenosis. I. A description of the disease based upon an analysis of 64 patients. Circulation. 1964;30(SUPPL 4):3–119.Google Scholar
  23. 23.
    Sherrid MV. Dynamic left ventricular outflow obstruction in hypertrophic cardiomyopathy revisited: significance, pathogenesis, and treatment. Cardiol Rev. 1998;6(3):135–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(3):201–11.  https://doi.org/10.1016/j.jacc.2009.02.075.CrossRefPubMedGoogle Scholar
  25. 25.
    Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet (London, England). 2013;381(9862):242–55.  https://doi.org/10.1016/S0140-6736(12)60397-3.CrossRefGoogle Scholar
  26. 26.
    Walsh R, Buchan R, Wilk A, John S, Felkin LE, Thomson KL, Chiaw TH, Loong CCW, Pua CJ, Raphael C, Prasad S, Barton PJ, Funke B, Watkins H, Ware JS, Cook SA. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur Heart J. 2017;  https://doi.org/10.1093/eurheartj/ehw603.
  27. 27.
    Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, Mazzarotto F, Blair E, Seller A, Taylor JC, Minikel EV, Exome Aggregation Consortium, null, MacArthur DG, Farrall M, Cook SA, Watkins H. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19(2):192–203.  https://doi.org/10.1038/gim.2016.90.CrossRefPubMedGoogle Scholar
  28. 28.
    Frey N, Luedde M, Katus HA. Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol. 2011;9(2):91–100.  https://doi.org/10.1038/nrcardio.2011.159.CrossRefPubMedGoogle Scholar
  29. 29.
    Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2001;33(4):655–70.  https://doi.org/10.1006/jmcc.2001.1340.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):749–70.  https://doi.org/10.1161/CIRCRESAHA.117.311059.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Corrado D, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: clinical impact of molecular genetic studies. Circulation. 2006;113(13):1634–7.  https://doi.org/10.1161/CIRCULATIONAHA.105.616490.CrossRefPubMedGoogle Scholar
  32. 32.
    Peters S, Trümmel M, Meyners W. Prevalence of right ventricular dysplasia-cardiomyopathy in a non-referral hospital. Int J Cardiol. 2004;97(3):499–501.  https://doi.org/10.1016/j.ijcard.2003.10.037.CrossRefPubMedGoogle Scholar
  33. 33.
    Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, Lerman BB, Markowitz SM, Ellinor PT, MacRae CA, Peters S, Grossmann KS, Drenckhahn J, Michely B, Sasse-Klaassen S, Birchmeier W, Dietz R, Breithardt G, Schulze-Bahr E, Thierfelder L. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet. 2004;36(11):1162–4.  https://doi.org/10.1038/ng1461.CrossRefPubMedGoogle Scholar
  34. 34.
    Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet. 2000;9(18):2761–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, Lorenzon A, Frigo G, Vettori A, Valente M, Towbin J, Thiene G, Danieli GA, Rampazzo A. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006;113(9):1171–9.  https://doi.org/10.1161/CIRCULATIONAHA.105.583674.CrossRefPubMedGoogle Scholar
  36. 36.
    Rampazzo A, Nava A, Malacrida S, Beffagna G, Bauce B, Rossi V, Zimbello R, Simionati B, Basso C, Thiene G, Towbin JA, Danieli GA. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2002;71(5):1200–6.  https://doi.org/10.1086/344208.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Syrris P, Ward D, Evans A, Asimaki A, Gandjbakhch E, Sen-Chowdhry S, McKenna WJ. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet. 2006;79(5):978–84.  https://doi.org/10.1086/509122.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Basso C, Thiene G, Corrado D, Angelini A, Nava A, Valente M. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation. 1996;94(5):983–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017;376(15):1489–90.  https://doi.org/10.1056/NEJMc1701400.CrossRefPubMedGoogle Scholar
  40. 40.
    Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, Fontaliran F, Nava A, Silvestri F, Blomstrom-Lundqvist C, Wlodarska EK, Fontaine G, Camerini F. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997;30(6):1512–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Hulot J-S, Jouven X, Empana J-P, Frank R, Fontaine G. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004;110(14):1879–84.  https://doi.org/10.1161/01.CIR.0000143375.93288.82.CrossRefPubMedGoogle Scholar
  42. 42.
    Nava A, Bauce B, Basso C, Muriago M, Rampazzo A, Villanova C, Daliento L, Buja G, Corrado D, Danieli GA, Thiene G. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2000;36(7):2226–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol. 2002;4(4):E101–8.  https://doi.org/10.1038/ncb0402-e101.CrossRefPubMedGoogle Scholar
  44. 44.
    Patel DM, Green KJ. Desmosomes in the heart: a review of clinical and mechanistic analyses. Cell Commun Adhes. 2014;21(3):109–28.  https://doi.org/10.3109/15419061.2014.906533.CrossRefPubMedGoogle Scholar
  45. 45.
    Sheikh F, Ross RS, Chen J. Cell-cell connection to cardiac disease. Trends Cardiovasc Med. 2009;19(6):182–90.  https://doi.org/10.1016/j.tcm.2009.12.001.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cox MGPJ, Hauer RNW. Arrhythmogenic right ventricular dysplasia/cardiomyopathy. Clin Cardiogenetics. 2011:79–96.  https://doi.org/10.1007/978-1-84996-471-5_5. Available at https://link.springer.com/chapter/10.1007/978-1-84996-471-5_5.Google Scholar
  47. 47.
    Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997;336(4):267–76.  https://doi.org/10.1056/NEJM199701233360407.CrossRefPubMedGoogle Scholar
  48. 48.
    Muchtar E, Blauwet LA, Gertz MA. Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):819–37.  https://doi.org/10.1161/CIRCRESAHA.117.310982.CrossRefPubMedGoogle Scholar
  49. 49.
    Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93(5):841–2.PubMedCrossRefGoogle Scholar
  50. 50.
    Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med. 2000;342(11):770–80.  https://doi.org/10.1056/NEJM200003163421104.CrossRefPubMedGoogle Scholar
  51. 51.
    Olivé M, Goldfarb L, Moreno D, Laforet E, Dagvadorj A, Sambuughin N, Martínez-Matos JA, Martínez F, Alió J, Farrero E, Vicart P, Ferrer I. Desmin-related myopathy: clinical, electrophysiological, radiological, neuropathological and genetic studies. J Neurol Sci. 2004;219(1–2):125–37.  https://doi.org/10.1016/j.jns.2004.01.007.CrossRefPubMedGoogle Scholar
  52. 52.
    Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest. 2009;119(7):1806–13.  https://doi.org/10.1172/JCI38027.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Carlsson L, Fischer C, Sjöberg G, Robson RM, Sejersen T, Thornell L-E. Cytoskeletal derangements in hereditary myopathy with a desmin L345P mutation. Acta Neuropathol. 2002;104(5):493–504.  https://doi.org/10.1007/s00401-002-0583-z.CrossRefPubMedGoogle Scholar
  54. 54.
    Schröder R, Goudeau B, Simon MC, Fischer D, Eggermann T, Clemen CS, Li Z, Reimann J, Xue Z, Rudnik-Schöneborn S, Zerres K, van der Ven PFM, Fürst DO, Kunz WS, Vicart P. On noxious desmin: functional effects of a novel heterozygous desmin insertion mutation on the extrasarcomeric desmin cytoskeleton and mitochondria. Hum Mol Genet. 2003;12(6):657–69.PubMedCrossRefGoogle Scholar
  55. 55.
    Arbustini E, Pasotti M, Pilotto A, Pellegrini C, Grasso M, Previtali S, Repetto A, Bellini O, Azan G, Scaffino M, Campana C, Piccolo G, Viganò M, Tavazzi L. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail. 2006;8(5):477–83.  https://doi.org/10.1016/j.ejheart.2005.11.003.CrossRefPubMedGoogle Scholar
  56. 56.
    Goebel HH, Voit T, Warlo I, Jacobs K, Johannsen U, Müller CR. Immunohistologic and electron microscopic abnormalities of desmin and dystrophin in familial cardiomyopathy and myopathy. Rev Neurol. 1994;150(6–7):452–9.PubMedGoogle Scholar
  57. 57.
    Goudeau B, Rodrigues-Lima F, Fischer D, Casteras-Simon M, Sambuughin N, de Visser M, Laforet P, Ferrer X, Chapon F, Sjöberg G, Kostareva A, Sejersen T, Dalakas MC, Goldfarb LG, Vicart P. Variable pathogenic potentials of mutations located in the desmin alpha-helical domain. Hum Mutat. 2006;27(9):906–13.  https://doi.org/10.1002/humu.20351.CrossRefPubMedGoogle Scholar
  58. 58.
    Harada H, Hayashi T, Nishi H, Kusaba K, Koga Y, Koga Y, Nonaka I, Kimura A. Phenotypic expression of a novel desmin gene mutation: hypertrophic cardiomyopathy followed by systemic myopathy. J Hum Genet. 2017;  https://doi.org/10.1038/s10038-017-0383-x.PubMedCrossRefGoogle Scholar
  59. 59.
    He Y, Zhang Z, Hong D, Dai Q, Jiang T. Myocardial fibrosis in desmin-related hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2010;12:68.  https://doi.org/10.1186/1532-429X-12-68.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Li D, Tapscoft T, Gonzalez O, Burch PE, Quiñones MA, Zoghbi WA, Hill R, Bachinski LL, Mann DL, Roberts R. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation. 1999;100(5):461–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Pruszczyk P, Kostera-Pruszczyk A, Shatunov A, Goudeau B, Dramiñska A, Takeda K, Sambuughin N, Vicart P, Strelkov SV, Goldfarb LG, Kamiñska A. Restrictive cardiomyopathy with atrioventricular conduction block resulting from a desmin mutation. Int J Cardiol. 2007;117(2):244–53.  https://doi.org/10.1016/j.ijcard.2006.05.019.CrossRefPubMedGoogle Scholar
  62. 62.
    Wang X, Osinska H, Gerdes AM, Robbins J. Desmin filaments and cardiac disease: establishing causality. J Card Fail. 2002;8(6 Suppl):S287–92.  https://doi.org/10.1054/jcaf.2002.129279.CrossRefPubMedGoogle Scholar
  63. 63.
    Arbustini E, Morbini P, Grasso M, Fasani R, Verga L, Bellini O, Dal Bello B, Campana C, Piccolo G, Febo O, Opasich C, Gavazzi A, Ferrans VJ. Restrictive cardiomyopathy, atrioventricular block and mild to subclinical myopathy in patients with desmin-immunoreactive material deposits. J Am Coll Cardiol. 1998;31(3):645–53.PubMedCrossRefGoogle Scholar
  64. 64.
    Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602.PubMedCrossRefGoogle Scholar
  65. 65.
    Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34(1):29–34.PubMedCrossRefGoogle Scholar
  66. 66.
    Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010;11(1):31–9.  https://doi.org/10.1007/s11154-010-9131-7.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Piek A, de Boer RA, Silljé HHW. The fibrosis-cell death axis in heart failure. Heart Fail Rev. 2016;21(2):199–211.  https://doi.org/10.1007/s10741-016-9536-9.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016;118(6):1021–40.  https://doi.org/10.1161/CIRCRESAHA.115.306565.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol. 2003;200(4):423–8.  https://doi.org/10.1002/path.1437.CrossRefPubMedGoogle Scholar
  70. 70.
    Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123.  https://doi.org/10.3389/fphar.2014.00123.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tsuruda T, Costello-Boerrigter LC, Burnett JC. Matrix metalloproteinases: pathways of induction by bioactive molecules. Heart Fail Rev. 2004;9(1):53–61.  https://doi.org/10.1023/B:HREV.0000011394.34355.bb.CrossRefPubMedGoogle Scholar
  72. 72.
    Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225(3):631–7.  https://doi.org/10.1002/jcp.22322.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Anderson KR, Sutton MG, Lie JT. Histopathological types of cardiac fibrosis in myocardial disease. J Pathol. 1979;128(2):79–85.  https://doi.org/10.1002/path.1711280205.CrossRefPubMedGoogle Scholar
  74. 74.
    Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol. 1989;13(7):1637–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Isoyama S, Nitta-Komatsubara Y. Acute and chronic adaptation to hemodynamic overload and ischemia in the aged heart. Heart Fail Rev. 2002;7(1):63–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63.  https://doi.org/10.1038/nrm809.CrossRefPubMedGoogle Scholar
  77. 77.
    Rosker C, Salvarani N, Schmutz S, Grand T, Rohr S. Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of α-smooth muscle actin containing stress fibers. Circ Res. 2011;109(10):1120–31.  https://doi.org/10.1161/CIRCRESAHA.111.244798.CrossRefPubMedGoogle Scholar
  78. 78.
    Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther. 2009;123(2):255–78.  https://doi.org/10.1016/j.pharmthera.2009.05.002.CrossRefPubMedGoogle Scholar
  79. 79.
    Brown RD, Ambler SK, Mitchell MD, Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol. 2005;45:657–87.  https://doi.org/10.1146/annurev.pharmtox.45.120403.095802.CrossRefPubMedGoogle Scholar
  80. 80.
    Kakkar R, Lee RT. Intramyocardial fibroblast myocyte communication. Circ Res. 2010;106(1):47–57.  https://doi.org/10.1161/CIRCRESAHA.109.207456.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.PubMedGoogle Scholar
  82. 82.
    Lyu L, Wang H, Li B, Qin Q, Qi L, Nagarkatti M, Nagarkatti P, Janicki JS, Wang XL, Cui T. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J Mol Cell Cardiol. 2015;89(Pt B):268–79.  https://doi.org/10.1016/j.yjmcc.2015.10.022.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, Sano M, Otsu K, Snider P, Conway SJ, Nagai R. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010;120(1):254–65.  https://doi.org/10.1172/JCI40295.CrossRefPubMedGoogle Scholar
  84. 84.
    Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JTR, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4.  https://doi.org/10.1038/nature07511.CrossRefPubMedGoogle Scholar
  85. 85.
    Watanabe T, Otsu K, Takeda T, Yamaguchi O, Hikoso S, Kashiwase K, Higuchi Y, Taniike M, Nakai A, Matsumura Y, Nishida K, Ichijo H, Hori M. Apoptosis signal-regulating kinase 1 is involved not only in apoptosis but also in non-apoptotic cardiomyocyte death. Biochem Biophys Res Commun. 2005;333(2):562–7.  https://doi.org/10.1016/j.bbrc.2005.05.151.CrossRefPubMedGoogle Scholar
  86. 86.
    Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, Takeda T, Watanabe T, Asahi M, Taniike M, Matsumura Y, Tsujimoto I, Hongo K, Kusakari Y, Kurihara S, Nishida K, Ichijo H, Hori M, Otsu K. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Natl Acad Sci U S A. 2003;100(26):15883–8.  https://doi.org/10.1073/pnas.2136717100.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Sawaki D, Hou L, Tomida S, Sun J, Zhan H, Aizawa K, Son B-K, Kariya T, Takimoto E, Otsu K, Conway SJ, Manabe I, Komuro I, Friedman SL, Nagai R, Suzuki T. Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes. Cardiovasc Res. 2015;107(4):420–30.  https://doi.org/10.1093/cvr/cvv155.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600–6.  https://doi.org/10.1016/j.yjmcc.2010.10.033.CrossRefPubMedGoogle Scholar
  89. 89.
    Khan R, Sheppard R. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology. 2006;118(1):10–24.  https://doi.org/10.1111/j.1365-2567.2006.02336.x.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Agrotis A, Kalinina N, Bobik A. Transforming growth factor-beta, cell signaling and cardiovascular disorders. Curr Vasc Pharmacol. 2005;3(1):55–61.PubMedCrossRefGoogle Scholar
  91. 91.
    Li G, Borger MA, Williams WG, Weisel RD, Mickle DAG, Wigle ED, Li R-K. Regional overexpression of insulin-like growth factor-I and transforming growth factor-beta1 in the myocardium of patients with hypertrophic obstructive cardiomyopathy. J Thorac Cardiovasc Surg. 2002;123(1):89–95.PubMedCrossRefGoogle Scholar
  92. 92.
    Sanderson JE, Lai KB, Shum IO, Wei S, Chow LT. Transforming growth factor-beta(1) expression in dilated cardiomyopathy. Heart. 2001;86(6):701–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74(2):184–95.  https://doi.org/10.1016/j.cardiores.2006.10.002.CrossRefPubMedGoogle Scholar
  94. 94.
    Fava RA, Olsen NJ, Postlethwaite AE, Broadley KN, Davidson JM, Nanney LB, Lucas C, Townes AS. Transforming growth factor beta 1 (TGF-beta 1) induced neutrophil recruitment to synovial tissues: implications for TGF-beta-driven synovial inflammation and hyperplasia. J Exp Med. 1991;173(5):1121–32.PubMedCrossRefGoogle Scholar
  95. 95.
    Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci U S A. 1987;84(16):5788–92.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab. 2000;71(1–2):418–35.  https://doi.org/10.1006/mgme.2000.3032.CrossRefPubMedGoogle Scholar
  97. 97.
    Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA, Lee ME. Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem. 2000;275(47):36653–8.  https://doi.org/10.1074/jbc.M004536200.CrossRefPubMedGoogle Scholar
  98. 98.
    Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.PubMedCrossRefGoogle Scholar
  99. 99.
    Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res. 2004;63(3):423–32.  https://doi.org/10.1016/j.cardiores.2004.04.030.CrossRefPubMedGoogle Scholar
  100. 100.
    Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700.PubMedCrossRefGoogle Scholar
  101. 101.
    Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci. 2004;35(2):83–92.  https://doi.org/10.1016/j.jdermsci.2003.12.006.CrossRefPubMedGoogle Scholar
  102. 102.
    Costanza B, Umelo IA, Bellier J, Castronovo V, Turtoi A. Stromal modulators of TGF-β in cancer. J Clin Med. 2017;6(1):7.  https://doi.org/10.3390/jcm6010007.CrossRefPubMedCentralPubMedGoogle Scholar
  103. 103.
    Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner I, Derynck R. The type II transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem. 1997;272(23):14850–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007;26(17):3957–67.  https://doi.org/10.1038/sj.emboj.7601818.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Mulder KM, Morris SL. Activation of P21ras by transforming growth factor beta in epithelial cells. J Biol Chem. 1992;267(8):5029–31.PubMedGoogle Scholar
  106. 106.
    Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19(1):128–39.  https://doi.org/10.1038/cr.2008.328.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Courcelles M, Frémin C, Voisin L, Lemieux S, Meloche S, Thibault P. Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions. Mol Syst Biol. 2013;9:669.  https://doi.org/10.1038/msb.2013.25.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin C-H, Landström M. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 2008;10(10):1199–207.  https://doi.org/10.1038/ncb1780.CrossRefPubMedGoogle Scholar
  109. 109.
    Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE. TRAF6 mediates Smad-independent activation of JNK and P38 by TGF-beta. Mol Cell. 2008;31(6):918–24.  https://doi.org/10.1016/j.molcel.2008.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Haglund K, Dikic I. Ubiquitylation and cell signaling. EMBO J. 2005;24(19):3353–9.  https://doi.org/10.1038/sj.emboj.7600808.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Zhang YE. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017;9(2).  https://doi.org/10.1101/cshperspect.a022129.CrossRefGoogle Scholar
  112. 112.
    Frigo DE, Tang Y, Beckman BS, Scandurro AB, Alam J, Burow ME, McLachlan JA. Mechanism of AP-1-mediated gene expression by select organochlorines through the P38 MAPK pathway. Carcinogenesis. 2004;25(2):249–61.  https://doi.org/10.1093/carcin/bgh009.CrossRefPubMedGoogle Scholar
  113. 113.
    Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK signaling pathway in renal fibrosis. Front Physiol. 2017;8:829.  https://doi.org/10.3389/fphys.2017.00829.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E. Involvement of the P38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem. 1999;274(38):27161–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Gui T, Sun Y, Shimokado A, Muragaki Y. The roles of mitogen-activated protein kinase pathways in TGF-β-induced epithelial-mesenchymal transition. J Sig Transduct. 2012;2012:289243.  https://doi.org/10.1155/2012/289243.CrossRefGoogle Scholar
  116. 116.
    Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000;275(47):36803–10.  https://doi.org/10.1074/jbc.M005912200.CrossRefPubMedGoogle Scholar
  117. 117.
    Chiang GG, Abraham RT. Phosphorylation of mammalian target of rapamycin (MTOR) at Ser-2448 is mediated by P70S6 kinase. J Biol Chem. 2005;280(27):25485–90.  https://doi.org/10.1074/jbc.M501707200.CrossRefPubMedGoogle Scholar
  118. 118.
    Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the MTOR pathway. J Cell Biol. 2007;178(3):437–51.  https://doi.org/10.1083/jcb.200611146.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Shegogue D, Trojanowska M. Mammalian target of rapamycin positively regulates collagen type I production via a phosphatidylinositol 3-kinase-independent pathway. J Biol Chem. 2004;279(22):23166–75.  https://doi.org/10.1074/jbc.M401238200.CrossRefPubMedGoogle Scholar
  120. 120.
    Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-β targeted cancer therapy. Int J Biol Sci. 2012;8(7):964–78.  https://doi.org/10.7150/ijbs.4564.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.  https://doi.org/10.1146/annurev.cellbio.21.020604.150721.CrossRefPubMedGoogle Scholar
  122. 122.
    Lee J, Moon H-J, Lee J-M, Joo C-K. Smad3 regulates rho signaling via NET1 in the transforming growth factor-beta-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells. J Biol Chem. 2010;285(34):26618–27.  https://doi.org/10.1074/jbc.M109.073155.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Ozdamar B, Bose R, Barrios-Rodiles M, Wang H-R, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science (New York, NY). 2005;307(5715):1603–9.  https://doi.org/10.1126/science.1105718.CrossRefGoogle Scholar
  124. 124.
    Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL. High-throughput mapping of a dynamic signaling network in mammalian cells. Science (New York, NY). 2005;307(5715):1621–5.  https://doi.org/10.1126/science.1105776.CrossRefGoogle Scholar
  125. 125.
    Stamos JL, Weis WI. The β-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5(1):a007898.  https://doi.org/10.1101/cshperspect.a007898.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837–47.PubMedCrossRefGoogle Scholar
  127. 127.
    Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front Med. 2015;2:59.  https://doi.org/10.3389/fmed.2015.00059.CrossRefGoogle Scholar
  128. 128.
    Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C. Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature. 2005;438(7069):867–72.  https://doi.org/10.1038/nature04170.CrossRefPubMedGoogle Scholar
  129. 129.
    Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438(7069):873–7.  https://doi.org/10.1038/nature04185.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Li VSW, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJR, Maurice MM, Mahmoudi T, Clevers H. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 2012;149(6):1245–56.  https://doi.org/10.1016/j.cell.2012.05.002.CrossRefPubMedGoogle Scholar
  131. 131.
    Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382(6592):638–42.  https://doi.org/10.1038/382638a0.CrossRefPubMedGoogle Scholar
  132. 132.
    Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destrée O, Clevers H. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996;86(3):391–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Duan J, Gherghe C, Liu D, Hamlett E, Srikantha L, Rodgers L, Regan JN, Rojas M, Willis M, Leask A, Majesky M, Deb A. Wnt1/bcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J. 2012;31(2):429–42.  https://doi.org/10.1038/emboj.2011.418.CrossRefPubMedGoogle Scholar
  134. 134.
    Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, Yamada C, Liu T-C, Huang G, Basson CT, Kispert A, Greenspan DS, Sato TN. Secreted frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol. 2009;11(1):46–55.  https://doi.org/10.1038/ncb1811.CrossRefPubMedGoogle Scholar
  135. 135.
    Lam AP, Flozak AS, Russell S, Wei J, Jain M, Mutlu GM, Budinger GRS, Feghali-Bostwick CA, Varga J, Gottardi CJ. Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol. 2011;45(5):915–22.  https://doi.org/10.1165/rcmb.2010-0113OC.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Surendran K, McCaul SP, Simon TC. A role for Wnt-4 in renal fibrosis. Am J Physiol Renal Physiol. 2002;282(3):F431–41.  https://doi.org/10.1152/ajprenal.0009.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener M-O, MacDougald OA, Distler O, Schett G, Distler JHW. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun. 2012;3:735.  https://doi.org/10.1038/ncomms1734.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, Sugano S, Akiyama T. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene. 2004;23(52):8520–6.  https://doi.org/10.1038/sj.onc.1207892.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Gori F, Lerner U, Ohlsson C, Baron R. A new WNT on the bone: WNT16, cortical bone thickness, porosity and fractures. BoneKEy Rep. 2015;4:669.  https://doi.org/10.1038/bonekey.2015.36. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432781/.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai Z-C, Guan K-L. Inactivation of YAP oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.  https://doi.org/10.1101/gad.1602907.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Liu C-Y, Zha Z-Y, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, Zhao S, Xiong Y, Lei Q-Y, Guan K-L. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem. 2010;285(48):37159–69.  https://doi.org/10.1074/jbc.M110.152942.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–83.  https://doi.org/10.1038/nature10137.CrossRefPubMedGoogle Scholar
  143. 143.
    Sansores-Garcia L, Bossuyt W, Wada K-I, Yonemura S, Tao C, Sasaki H, Halder G. Modulating F-actin organization induces organ growth by affecting the hippo pathway. EMBO J. 2011;30(12):2325–35.  https://doi.org/10.1038/emboj.2011.157.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Liu F, Lagares D, Choi KM, Stopfer L, Marinković A, Vrbanac V, Probst CK, Hiemer SE, Sisson TH, Horowitz JC, Rosas IO, Fredenburgh LE, Feghali-Bostwick C, Varelas X, Tager AM, Tschumperlin DJ. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2015;308(4):L344–57.  https://doi.org/10.1152/ajplung.00300.2014.CrossRefPubMedGoogle Scholar
  145. 145.
    Mannaerts I, Leite SB, Verhulst S, Claerhout S, Eysackers N, Thoen LFR, Hoorens A, Reynaert H, Halder G, van Grunsven LA. The hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol. 2015;63(3):679–88.  https://doi.org/10.1016/j.jhep.2015.04.011.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J, Atfi A, Mauviel A. Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene. 2002;21(32):4879–84.  https://doi.org/10.1038/sj.onc.1205623.CrossRefPubMedGoogle Scholar
  147. 147.
    Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008;10(7):837–48.  https://doi.org/10.1038/ncb1748.CrossRefPubMedGoogle Scholar
  148. 148.
    Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, Fassina A, Cordenonsi M, Piccolo S. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158(1):157–70.  https://doi.org/10.1016/j.cell.2014.06.013.CrossRefPubMedGoogle Scholar
  149. 149.
    Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front Plant Sci. 2014;5:190.  https://doi.org/10.3389/fpls.2014.00190.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Ross FA, MacKintosh C, Hardie DG. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J. 2016;283(16):2987–3001.  https://doi.org/10.1111/febs.13698.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Li J, Coven DL, Miller EJ, Hu X, Young ME, Carling D, Sinusas AJ, Young LH. Activation of AMPK alpha- and gamma-isoform complexes in the intact ischemic rat heart. Am J Physiol Heart Circ Physiol. 2006;291(4):H1927–34.  https://doi.org/10.1152/ajpheart.00251.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Hardie DG, Ashford MLJ. AMPK: regulating energy balance at the cellular and whole body levels. Physiology (Bethesda). 2014;29(2):99–107.  https://doi.org/10.1152/physiol.00050.2013.CrossRefGoogle Scholar
  153. 153.
    Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–35.  https://doi.org/10.1038/nrm.2017.95.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Hopkins TA, Dyck JRB, Lopaschuk GD. AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart. Biochem Soc Trans. 2003;31(Pt 1):207–12.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Bando H, Atsumi T, Nishio T, Niwa H, Mishima S, Shimizu C, Yoshioka N, Bucala R, Koike T. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res. 2005;11(16):5784–92.  https://doi.org/10.1158/1078-0432.CCR-05-0149.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Horman S, Beauloye C, Vanoverschelde J-L, Bertrand L. AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep. 2012;9(3):164–73.  https://doi.org/10.1007/s11897-012-0102-z.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Zarrinpashneh E, Carjaval K, Beauloye C, Ginion A, Mateo P, Pouleur A-C, Horman S, Vaulont S, Hoerter J, Viollet B, Hue L, Vanoverschelde J-L, Bertrand L. Role of the alpha2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. Am J Physiol Heart Circ Physiol. 2006;291(6):H2875–83.  https://doi.org/10.1152/ajpheart.01032.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Zhang P, Hu X, Xu X, Fassett J, Zhu G, Viollet B, Xu W, Wiczer B, Bernlohr DA, Bache RJ, Chen Y. AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice. Hypertension (Dallas, Tex.: 1979). 2008;52(5):918–24.  https://doi.org/10.1161/HYPERTENSIONAHA.108.114702.CrossRefGoogle Scholar
  160. 160.
    Kato MF, Shibata R, Obata K, Miyachi M, Yazawa H, Tsuboi K, Yamada T, Nishizawa T, Noda A, Cheng XW, Murate T, Koike Y, Murohara T, Yokota M, Nagata K. Pioglitazone attenuates cardiac hypertrophy in rats with salt-sensitive hypertension: role of activation of AMP-activated protein kinase and inhibition of Akt. J Hypertens. 2008;26(8):1669–76.  https://doi.org/10.1097/HJH.0b013e328302f0f7.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Sakamoto A, Hongo M, Furuta K, Saito K, Nagai R, Ishizaka N. Pioglitazone ameliorates systolic and diastolic cardiac dysfunction in rat model of angiotensin II-induced hypertension. Int J Cardiol. 2013;167(2):409–15.  https://doi.org/10.1016/j.ijcard.2012.01.007.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Cieslik KA, Taffet GE, Crawford JR, Trial J, Mejia Osuna P, Entman ML. AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction. J Mol Cell Cardiol. 2013;63:26–36.  https://doi.org/10.1016/j.yjmcc.2013.07.005.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Mishra R, Cool BL, Laderoute KR, Foretz M, Viollet B, Simonson MS. AMP-activated protein kinase inhibits transforming growth factor-beta-induced Smad3-dependent transcription and myofibroblast transdifferentiation. J Biol Chem. 2008;283(16):10461–9.  https://doi.org/10.1074/jbc.M800902200.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Lim J-Y, Oh M-A, Kim WH, Sohn H-Y, Park SI. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator P300. J Cell Physiol. 2012;227(3):1081–9.  https://doi.org/10.1002/jcp.22824.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Qi H, Liu Y, Li S, Chen Y, Li L, Cao Y, E M, Shi P, Song C, Li B, Sun H. Activation of AMPK attenuated cardiac fibrosis by inhibiting CDK2 via P21/P27 and MiR-29 family pathways in rats. Mol Ther Nucleic Acids. 2017;8:277–90.  https://doi.org/10.1016/j.omtn.2017.07.004.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Campbell SE, Katwa LC. Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol. 1997;29(7):1947–58.  https://doi.org/10.1006/jmcc.1997.0435.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res. 1998;40(2):352–63.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Schultz JEJ, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL, Kimball TR, Doetschman T. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest. 2002;109(6):787–96.  https://doi.org/10.1172/JCI14190.CrossRefPubMedCentralGoogle Scholar
  169. 169.
    Wenzel S, Taimor G, Piper HM, Schlüter KD. Redox-sensitive intermediates mediate angiotensin II-induced P38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J. 2001;15(12):2291–3.  https://doi.org/10.1096/fj.00-0827fje.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Ichihara S, Senbonmatsu T, Price E, Ichiki T, Gaffney FA, Inagami T. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation. 2001;104(3):346–51.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Crawford DC, Chobanian AV, Brecher P. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ Res. 1994;74(4):727–39.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanagi M, Katoh M, Yamamoto H, Tamaki K, Shimokawa H, Takeshita A. Early induction of transforming growth factor-beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by long-term blockade of nitric oxide synthesis in rats. Hypertension (Dallas, Tex: 1979). 1998;32(2):273–9.CrossRefGoogle Scholar
  173. 173.
    Rodríguez-Vita J, Sánchez-López E, Esteban V, Rupérez M, Egido J, Ruiz-Ortega M. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation. 2005;111(19):2509–17.  https://doi.org/10.1161/01.CIR.0000165133.84978.E2.CrossRefPubMedGoogle Scholar
  174. 174.
    Yamakawa T, Tanaka S, Numaguchi K, Yamakawa Y, Motley ED, Ichihara S, Inagami T. Involvement of rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension (Dallas, Tex.: 1979). 2000;35(1 Pt 2):313–8.CrossRefGoogle Scholar
  175. 175.
    Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997;8(3):171–9.PubMedCrossRefGoogle Scholar
  176. 176.
    Rupérez M, Sánchez-López E, Blanco-Colio LM, Esteban V, Rodríguez-Vita J, Plaza JJ, Egido J, Ruiz-Ortega M. The Rho-kinase pathway regulates angiotensin II-induced renal damage. Kidney Int Suppl. 2005;99:S39–45.  https://doi.org/10.1111/j.1523-1755.2005.09908.x.CrossRefGoogle Scholar
  177. 177.
    Wei C, Kim I-K, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S. NF-ΚB mediated MiR-26a regulation in cardiac fibrosis. J Cell Physiol. 2013;228(7):1433–42.  https://doi.org/10.1002/jcp.24296.CrossRefPubMedGoogle Scholar
  178. 178.
    Czuwara-Ladykowska J, Shirasaki F, Jackers P, Watson DK, Trojanowska M. Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J Biol Chem. 2001;276(24):20839–48.  https://doi.org/10.1074/jbc.M010133200.CrossRefPubMedGoogle Scholar
  179. 179.
    Elkareh J, Kennedy DJ, Yashaswi B, Vetteth S, Shidyak A, Kim EGR, Smaili S, Periyasamy SM, Hariri IM, Fedorova L, Liu J, Wu L, Kahaleh MB, Xie Z, Malhotra D, Fedorova OV, Kashkin VA, Bagrov AY, Shapiro JI. Marinobufagenin stimulates fibroblast collagen production and causes fibrosis in experimental uremic cardiomyopathy. Hypertension (Dallas, Tex.: 1979). 2007;49(1):215–24.  https://doi.org/10.1161/01.HYP.0000252409.36927.05.CrossRefGoogle Scholar
  180. 180.
    Kennedy DJ, Vetteth S, Periyasamy SM, Kanj M, Fedorova L, Khouri S, Kahaleh MB, Xie Z, Malhotra D, Kolodkin NI, Lakatta EG, Fedorova OV, Bagrov AY, Shapiro JI. Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension (Dallas, Tex.: 1979). 2006;47(3):488–95.  https://doi.org/10.1161/01.HYP.0000202594.82271.92.CrossRefGoogle Scholar
  181. 181.
    Braunwald E, Klocke FJ. Digitalis. Annu Rev Med. 1965;16:371–86.  https://doi.org/10.1146/annurev.me.16.020165.002103.CrossRefPubMedGoogle Scholar
  182. 182.
    Bagrov AY, Fedorova OV, Dmitrieva RI, French AW, Anderson DE. Plasma marinobufagenin-like and ouabain-like immunoreactivity during saline volume expansion in anesthetized dogs. Cardiovasc Res. 1996;31(2):296–305.PubMedCrossRefGoogle Scholar
  183. 183.
    Fedorova OV, Anderson DE, Bagrov AY. Plasma marinobufagenin-like and ouabain-like immunoreactivity in adrenocorticotropin-treated rats. Am J Hypertens. 1998;11(7):796–802.PubMedCrossRefGoogle Scholar
  184. 184.
    Hamlyn JM, Lu ZR, Manunta P, Ludens JH, Kimura K, Shah JR, Laredo J, Hamilton JP, Hamilton MJ, Hamilton BP. Observations on the nature, biosynthesis, secretion and significance of endogenous ouabain. Clin Exp Hypertens (New York, NY: 1993). 1998;20(5–6):523–33.Google Scholar
  185. 185.
    Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs. 2007;7(3):173–89.PubMedCrossRefGoogle Scholar
  186. 186.
    Crabtree GR. Calcium, calcineurin, and the control of transcription. J Biol Chem. 2001;276(4):2313–6.  https://doi.org/10.1074/jbc.R000024200.CrossRefPubMedGoogle Scholar
  187. 187.
    Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004;63(3):467–75.  https://doi.org/10.1016/j.cardiores.2004.01.021.CrossRefPubMedGoogle Scholar
  188. 188.
    Crabtree GR. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell. 1999;96(5):611–4.PubMedCrossRefGoogle Scholar
  189. 189.
    Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem. 1998;273(22):13367–70.PubMedCrossRefGoogle Scholar
  190. 190.
    Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003;17(18):2205–32.  https://doi.org/10.1101/gad.1102703.CrossRefPubMedGoogle Scholar
  191. 191.
    Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215–28.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Wilkins BJ, De Windt LJ, Bueno OF, Braz JC, Glascock BJ, Kimball TF, Molkentin JD. Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Mol Cell Biol. 2002;22(21):7603–13.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    De Windt LJ, Lim HW, Haq S, Force T, Molkentin JD. Calcineurin promotes protein kinase C and C-Jun NH2-terminal kinase activation in the heart. Cross-talk between cardiac hypertrophic signaling pathways. J Biol Chem. 2000;275(18):13571–9.PubMedCrossRefGoogle Scholar
  194. 194.
    Ichida M, Finkel T. Ras regulates NFAT3 activity in cardiac myocytes. J Biol Chem. 2001;276(5):3524–30.  https://doi.org/10.1074/jbc.M004275200.CrossRefPubMedGoogle Scholar
  195. 195.
    Porter CM, Havens MA, Clipstone NA. Identification of amino acid residues and protein kinases involved in the regulation of NFATc subcellular localization. J Biol Chem. 2000;275(5):3543–51.PubMedCrossRefGoogle Scholar
  196. 196.
    Chow CW, Rincón M, Cavanagh J, Dickens M, Davis RJ. Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science (New York, NY). 1997;278(5343):1638–41.CrossRefGoogle Scholar
  197. 197.
    Yang TTC, Xiong Q, Enslen H, Davis RJ, Chow C-W. Phosphorylation of NFATc4 by P38 mitogen-activated protein kinases. Mol Cell Biol. 2002;22(11):3892–904.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Gómez del Arco P, Martínez-Martínez S, Maldonado JL, Ortega-Pérez I, Redondo JM. A role for the P38 MAP kinase pathway in the nuclear shuttling of NFATp. J Biol Chem. 2000;275(18):13872–8.PubMedCrossRefGoogle Scholar
  199. 199.
    Faul C, Amaral AP, Oskouei B, Hu M-C, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408.  https://doi.org/10.1172/JCI46122.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Hao H, Li X, Li Q, Lin H, Chen Z, Xie J, Xuan W, Liao W, Bin J, Huang X, Kitakaze M, Liao Y. FGF23 promotes myocardial fibrosis in mice through activation of β-catenin. Oncotarget. 2016;7(40):64649–64.  https://doi.org/10.18632/oncotarget.11623.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003;83(3):731–801.  https://doi.org/10.1152/physrev.00029.2002.CrossRefPubMedGoogle Scholar
  202. 202.
    Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann J-P, Baud L. The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res. 2012;96(1):38–45.  https://doi.org/10.1093/cvr/cvs099.CrossRefPubMedGoogle Scholar
  203. 203.
    Freund C, Schmidt-Ullrich R, Baurand A, Dunger S, Schneider W, Loser P, El-Jamali A, Dietz R, Scheidereit C, Bergmann MW. Requirement of nuclear factor-kappaB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation. 2005;111(18):2319–25.  https://doi.org/10.1161/01.CIR.0000164237.58200.5A.CrossRefPubMedGoogle Scholar
  204. 204.
    Burkard N, Becher J, Heindl C, Neyses L, Schuh K, Ritter O. Targeted proteolysis sustains calcineurin activation. Circulation. 2005;111(8):1045–53.  https://doi.org/10.1161/01.CIR.0000156458.80515.F7.CrossRefPubMedGoogle Scholar
  205. 205.
    Abe M, Oda N, Sato Y. Cell-associated activation of latent transforming growth factor-beta by calpain. J Cell Physiol. 1998;174(2):186–93.  https://doi.org/10.1002/(SICI)1097-4652(199802)174:2<186::AID-JCP6>3.0.CO;2-K.CrossRefPubMedGoogle Scholar
  206. 206.
    Yang K, Zhang T-P, Tian C, Jia L-X, Du J, Li H-H. Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensin II-induced cardiac remodeling. Am J Hypertens. 2012;25(9):994–1001.  https://doi.org/10.1038/ajh.2012.74.CrossRefPubMedGoogle Scholar
  207. 207.
    Schisler JC, Rubel CE, Zhang C, Lockyer P, Cyr DM, Patterson C. CHIP protects against cardiac pressure overload through regulation of AMPK. J Clin Invest. 2013;123(8):3588–99.  https://doi.org/10.1172/JCI69080.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Li H-H, Kedar V, Zhang C, McDonough H, Arya R, Wang D-Z, Patterson C. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest. 2004;114(8):1058–71.  https://doi.org/10.1172/JCI22220.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Li H-H, Willis MS, Lockyer P, Miller N, McDonough H, Glass DJ, Patterson C. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of forkhead proteins. J Clin Invest. 2007;117(11):3211–23.  https://doi.org/10.1172/JCI31757.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 2006;20(24):3347–65.  https://doi.org/10.1101/gad.1492806.CrossRefPubMedGoogle Scholar
  211. 211.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96(6):857–68.PubMedCrossRefGoogle Scholar
  212. 212.
    Chen SN, Czernuszewicz G, Tan Y, Lombardi R, Jin J, Willerson JT, Marian AJ. Human molecular genetic and functional studies identify TRIM63, encoding muscle RING finger protein 1, as a novel gene for human hypertrophic cardiomyopathy. Circ Res. 2012;111(7):907–19.  https://doi.org/10.1161/CIRCRESAHA.112.270207.CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Su M, Wang J, Kang L, Wang Y, Zou Y, Feng X, Wang D, Ahmad F, Zhou X, Hui R, Song L. Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy. Int J Mol Sci. 2014;15(6):9302–13.  https://doi.org/10.3390/ijms15069302.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Mearini G, Gedicke C, Schlossarek S, Witt CC, Krämer E, Cao P, Gomes MD, Lecker SH, Labeit S, Willis MS, Eschenhagen T, Carrier L. Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovasc Res. 2010;85(2):357–66.  https://doi.org/10.1093/cvr/cvp348.CrossRefPubMedGoogle Scholar
  215. 215.
    Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Beckmann J, Weissenbach J, Vosberg HP, Fiszman M, Komajda M, Schwartz K. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):438–40.  https://doi.org/10.1038/ng1295-438.CrossRefPubMedGoogle Scholar
  216. 216.
    Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):434–7.  https://doi.org/10.1038/ng1295-434.CrossRefPubMedGoogle Scholar
  217. 217.
    Duerrschmid C, Crawford JR, Reineke E, Taffet GE, Trial J, Entman ML, Haudek SB. TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis. J Mol Cell Cardiol. 2013;57:59–67.  https://doi.org/10.1016/j.yjmcc.2013.01.006.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Papathanasiou S, Rickelt S, Soriano ME, Schips TG, Maier HJ, Davos CH, Varela A, Kaklamanis L, Mann DL, Capetanaki Y. Tumor necrosis factor-α confers cardioprotection through ectopic expression of keratins K8 and K18. Nat Med. 2015;21(9):1076–84.  https://doi.org/10.1038/nm.3925.CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Schulz R, Heusch G. Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation. 2009;119(10):1355–7.  https://doi.org/10.1161/CIRCULATIONAHA.108.846105.CrossRefPubMedGoogle Scholar
  220. 220.
    Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001;11(9):372–7.PubMedCrossRefGoogle Scholar
  221. 221.
    Yang YM, Seki E. TNFα in liver fibrosis. Curr Pathobiol Rep. 2015;3(4):253–61.  https://doi.org/10.1007/s40139-015-0093-z.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Argulian E, Messerli FH, Aziz EF, Winson G, Agarwal V, Kaddaha F, Kim B, Sherrid MV. Antihypertensive therapy in hypertrophic cardiomyopathy. Am J Cardiol. 2013;111(7):1040–5.  https://doi.org/10.1016/j.amjcard.2012.12.026.CrossRefPubMedGoogle Scholar
  223. 223.
    Artz G, Wynne J. Restrictive cardiomyopathy. Curr Treat Options Cardiovasc Med. 2000;2(5):431–8.PubMedCrossRefGoogle Scholar
  224. 224.
    Haugaa KH, Bundgaard H, Edvardsen T, Eschen O, Gilljam T, Hansen J, Jensen HK, Platonov PG, Svensson A, Svendsen JH. Management of patients with arrhythmogenic right ventricular cardiomyopathy in the Nordic countries. Scand Cardiovasc J SCJ. 2015;49(6):299–307.  https://doi.org/10.3109/14017431.2015.1086017.CrossRefPubMedGoogle Scholar
  225. 225.
    Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet (London, England). 2017;390(10092):400–14.  https://doi.org/10.1016/S0140-6736(16)31713-5.CrossRefGoogle Scholar
  226. 226.
    Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102(12):1388–93.PubMedCrossRefGoogle Scholar
  227. 227.
    Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, Mysiak A, O’Moore-Sullivan T, Marwick TH. A randomized study of the beneficial effects of aldosterone antagonism on LV function, structure, and fibrosis markers in metabolic syndrome. JACC Cardiovasc Imaging. 2011;4(12):1239–49.  https://doi.org/10.1016/j.jcmg.2011.08.014.CrossRefPubMedGoogle Scholar
  228. 228.
    López B, Querejeta R, Varo N, González A, Larman M, Martínez Ubago JL, Díez J. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation. 2001;104(3):286–91.PubMedCrossRefGoogle Scholar
  229. 229.
    Mak GJ, Ledwidge MT, Watson CJ, Phelan DM, Dawkins IR, Murphy NF, Patle AK, Baugh JA, McDonald KM. Natural history of markers of collagen turnover in patients with early diastolic dysfunction and impact of eplerenone. J Am Coll Cardiol. 2009;54(18):1674–82.  https://doi.org/10.1016/j.jacc.2009.08.021.CrossRefPubMedGoogle Scholar
  230. 230.
    Watanabe R, Suzuki J-I, Wakayama K, Maejima Y, Shimamura M, Koriyama H, Nakagami H, Kumagai H, Ikeda Y, Akazawa H, Morishita R, Komuro I, Isobe M. A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction. Sci Rep. 2017;7:43920.  https://doi.org/10.1038/srep43920.CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Kurtoglu E, Balta S, Karakus Y, Yasar E, Cuglan B, Kaplan O, Gozubuyuk G. Ivabradine improves heart rate variability in patients with nonischemic dilated cardiomyopathy. Arq Bras Cardiol. 2014;103(4):308–14.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Rohm I, Kretzschmar D, Pistulli R, Franz M, Schulze PC, Stumpf C, Yilmaz A. Impact of ivabradine on inflammatory markers in chronic heart failure. J Immunol Res. 2016;2016:6949320.  https://doi.org/10.1155/2016/6949320.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Yue-Chun L, Guang-Yi C, Li-Sha G, Chao X, Xinqiao T, Cong L, Xiao-Ya D, Xiangjun Y. The protective effects of ivabradine in preventing progression from viral myocarditis to dilated cardiomyopathy. Front Pharmacol. 2016;7:408.  https://doi.org/10.3389/fphar.2016.00408.CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Szardien S, Nef HM, Voss S, Troidl C, Liebetrau C, Hoffmann J, Rauch M, Mayer K, Kimmich K, Rolf A, Rixe J, Troidl K, Kojonazarov B, Schermuly RT, Kostin S, Elsässer A, Hamm CW, Möllmann H. Regression of cardiac hypertrophy by granulocyte colony-stimulating factor-stimulated interleukin-1β synthesis. Eur Heart J. 2012;33(5):595–605.  https://doi.org/10.1093/eurheartj/ehr434.CrossRefPubMedGoogle Scholar
  235. 235.
    Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan Y-T, Prabhu SD. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-KappaB and inflammatory activation. Circulation. 2009;119(10):1386–97.  https://doi.org/10.1161/CIRCULATIONAHA.108.802918.CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Schafer S, Viswanathan S, Widjaja AA, Lim W-W, Moreno-Moral A, DeLaughter DM, Ng B, Patone G, Chow K, Khin E, Tan J, Chothani SP, Ye L, Rackham OJL, Ko NSJ, Sahib NE, Pua CJ, Zhen NTG, Xie C, Wang M, Maatz H, Lim S, Saar K, Blachut S, Petretto E, Schmidt S, Putoczki T, Guimarães-Camboa N, Wakimoto H, van Heesch S, Sigmundsson K, Lim SL, Soon JL, Chao VTT, Chua YL, Tan TE, Evans SM, Loh YJ, Jamal MH, Ong KK, Chua KC, Ong B-H, Chakaramakkil MJ, Seidman JG, Seidman CE, Hubner N, Sin KYK, Cook SA. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552(7683):110–5.  https://doi.org/10.1038/nature24676.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Obana M, Maeda M, Takeda K, Hayama A, Mohri T, Yamashita T, Nakaoka Y, Komuro I, Takeda K, Matsumiya G, Azuma J, Fujio Y. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation. 2010;121(5):684–91.  https://doi.org/10.1161/CIRCULATIONAHA.109.893677.CrossRefPubMedGoogle Scholar
  238. 238.
    Margaritopoulos GA, Vasarmidi E, Antoniou KM. Pirfenidone in the treatment of idiopathic pulmonary fibrosis: an evidence-based review of its place in therapy. Core Evid. 2016;11:11–22.  https://doi.org/10.2147/CE.S76549.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Yamagami K, Oka T, Wang Q, Ishizu T, Lee J-K, Miwa K, Akazawa H, Naito AT, Sakata Y, Komuro I. Pirfenidone exhibits cardioprotective effects by regulating myocardial fibrosis and vascular permeability in pressure-overloaded hearts. Am J Physiol Heart Circ Physiol. 2015;309(3):H512–22.  https://doi.org/10.1152/ajpheart.00137.2015.CrossRefPubMedGoogle Scholar
  240. 240.
    Edgley AJ, Krum H, Kelly DJ. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-β. Cardiovasc Ther. 2012;30(1):e30–40.  https://doi.org/10.1111/j.1755-5922.2010.00228.x.CrossRefPubMedGoogle Scholar
  241. 241.
    Kelly DJ, Zhang Y, Connelly K, Cox AJ, Martin J, Krum H, Gilbert RE. Tranilast attenuates diastolic dysfunction and structural injury in experimental diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2007;293(5):H2860–9.  https://doi.org/10.1152/ajpheart.01167.2006.CrossRefPubMedGoogle Scholar
  242. 242.
    Martin J, Kelly DJ, Mifsud SA, Zhang Y, Cox AJ, See F, Krum H, Wilkinson-Berka J, Gilbert RE. Tranilast attenuates cardiac matrix deposition in experimental diabetes: role of transforming growth factor-beta. Cardiovasc Res. 2005;65(3):694–701.  https://doi.org/10.1016/j.cardiores.2004.10.041.CrossRefPubMedGoogle Scholar
  243. 243.
    Forcheron F, Basset A, Abdallah P, Del Carmine P, Gadot N, Beylot M. Diabetic cardiomyopathy: effects of fenofibrate and metformin in an experimental model – the Zucker diabetic rat. Cardiovasc Diabetol. 2009;8:16.  https://doi.org/10.1186/1475-2840-8-16.CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Zhang J, Cheng Y, Gu J, Wang S, Zhou S, Wang Y, Tan Y, Feng W, Fu Y, Mellen N, Cheng R, Ma J, Zhang C, Li Z, Cai L. Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of type 1 diabetic mice. Clin Sci (London, England: 1979). 2016;130(8):625–41.  https://doi.org/10.1042/CS20150623.CrossRefGoogle Scholar
  245. 245.
    Cevey ÁC, Mirkin GA, Donato M, Rada MJ, Penas FN, Gelpi RJ, Goren NB. Treatment with fenofibrate plus a low dose of Benznidazole attenuates cardiac dysfunction in experimental Chagas disease. Int J Parasitol Drugs Drug Resist. 2017;7(3):378–87.  https://doi.org/10.1016/j.ijpddr.2017.10.003.CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Lim HW, De Windt LJ, Mante J, Kimball TR, Witt SA, Sussman MA, Molkentin JD. Reversal of cardiac hypertrophy in transgenic disease models by calcineurin inhibition. J Mol Cell Cardiol. 2000;32(4):697–709.  https://doi.org/10.1006/jmcc.2000.1113.CrossRefPubMedGoogle Scholar
  247. 247.
    Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science (New York, NY). 1998;281(5383):1690–3.CrossRefGoogle Scholar
  248. 248.
    Taigen T, De Windt LJ, Lim HW, Molkentin JD. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A. 2000;97(3):1196–201.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation. 2002;105(6):677–9.PubMedCrossRefGoogle Scholar
  250. 250.
    Ding B, Price RL, Borg TK, Weinberg EO, Halloran PF, Lorell BH. Pressure overload induces severe hypertrophy in mice treated with cyclosporine, an inhibitor of calcineurin. Circ Res. 1999;84(6):729–34.PubMedCrossRefGoogle Scholar
  251. 251.
    Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, Nayor M, Konno T, Gorham JM, Wolf CM, Kim JB, Schmitt JP, Molkentin JD, Norris RA, Tager AM, Hoffman SR, Markwald RR, Seidman CE, Seidman JG. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J Clin Invest. 2010;120(10):3520–9.  https://doi.org/10.1172/JCI42028.CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Ananthasubramaniam K, Garikapati K, Williams CT. Progressive left ventricular hypertrophy after heart transplantation: insights and mechanisms suggested by multimodal images. Tex Heart Inst J. 2016;43(1):65–8.  https://doi.org/10.14503/THIJ-14-4657.CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    McLeod J, Wu S, Grazette L, Sarcon A. Tacrolimus-associated dilated cardiomyopathy in adult patient after orthotopic liver transplant. J Invest Med High Impact Case Rep. 2017;5(2):2324709617706087.  https://doi.org/10.1177/2324709617706087.CrossRefGoogle Scholar
  254. 254.
    Zhang N, Wei W-Y, Li L-L, Hu C, Tang Q-Z. Therapeutic potential of polyphenols in cardiac fibrosis. Front Pharmacol. 2018;9:122.  https://doi.org/10.3389/fphar.2018.00122.CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Guo H, Zhang X, Cui Y, Zhou H, Xu D, Shan T, Zhang F, Guo Y, Chen Y, Wu D. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Toxicol Appl Pharmacol. 2015;287(2):168–77.  https://doi.org/10.1016/j.taap.2015.06.002.CrossRefPubMedGoogle Scholar
  256. 256.
    Guo S, Meng X-W, Yang X-S, Liu X-F, Ou-Yang C-H, Liu C. Curcumin administration suppresses collagen synthesis in the hearts of rats with experimental diabetes. Acta Pharmacol Sin. 2018;39(2):195–204.  https://doi.org/10.1038/aps.2017.92.CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Li M, Jiang Y, Jing W, Sun B, Miao C, Ren L. Quercetin provides greater cardioprotective effect than its glycoside derivative rutin on isoproterenol-induced cardiac fibrosis in the rat. Can J Physiol Pharmacol. 2013;91(11):951–9.  https://doi.org/10.1139/cjpp-2012-0432.CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Kuno A, Hori YS, Hosoda R, Tanno M, Miura T, Shimamoto K, Horio Y. Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of P300 protein. J Biol Chem. 2013;288(8):5963–72.  https://doi.org/10.1074/jbc.M112.392050.CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Wu H, Li G-N, Xie J, Li R, Chen Q-H, Chen J-Z, Wei Z-H, Kang L-N, Xu B. Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc Disord. 2016;16:5.  https://doi.org/10.1186/s12872-015-0169-z.CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Adamo CM, Dai D-F, Percival JM, Minami E, Willis MS, Patrucco E, Froehner SC, Beavo JA. Sildenafil reverses cardiac dysfunction in the Mdx mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2010;107(44):19079–83.  https://doi.org/10.1073/pnas.1013077107.CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Leung DG, Herzka DA, Thompson WR, He B, Bibat G, Tennekoon G, Russell SD, Schuleri KH, Lardo AC, Kass DA, Thompson RE, Judge DP, Wagner KR. Sildenafil does not improve cardiomyopathy in Duchenne/Becker muscular dystrophy. Ann Neurol. 2014;76(4):541–9.  https://doi.org/10.1002/ana.24214.CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Hammers DW, Sleeper MM, Forbes SC, Shima A, Walter GA, Sweeney HL. Tadalafil treatment delays the onset of cardiomyopathy in dystrophin-deficient hearts. J Am Heart Assoc. 2016;5(8):e003911.  https://doi.org/10.1161/JAHA.116.003911.CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Arimura T, Helbling-Leclerc A, Massart C, Varnous S, Niel F, Lacène E, Fromes Y, Toussaint M, Mura A-M, Keller DI, Amthor H, Isnard R, Malissen M, Schwartz K, Bonne G. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet. 2005;14(1):155–69.  https://doi.org/10.1093/hmg/ddi017.CrossRefPubMedGoogle Scholar
  264. 264.
    Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, Worman HJ. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest. 2007;117(5):1282–93.  https://doi.org/10.1172/JCI29042.CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Wu W, Muchir A, Shan J, Bonne G, Worman HJ. Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation. 2011;123(1):53–61.  https://doi.org/10.1161/CIRCULATIONAHA.110.970673.CrossRefPubMedGoogle Scholar
  266. 266.
    Peter PS, Brady JE, Yan L, Chen W, Engelhardt S, Wang Y, Sadoshima J, Vatner SF, Vatner DE. Inhibition of P38 alpha MAPK rescues cardiomyopathy induced by overexpressed beta 2-adrenergic receptor, but not beta 1-adrenergic receptor. J Clin Invest. 2007;117(5):1335–43.  https://doi.org/10.1172/JCI29576.CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Zhang C, Zhou G, Chen Y, Liu S, Chen F, Xie L, Wang W, Zhang Y, Wang T, Lai X, Ma L. Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF-α and TGF-β1/ERK1/2 signaling pathways. Mol Med Rep. 2018;17(1):71–8.  https://doi.org/10.3892/mmr.2017.7882.CrossRefPubMedGoogle Scholar
  268. 268.
    Arnous S, Mozid A, Mathur A. The bone marrow derived adult stem cells for dilated cardiomyopathy (REGENERATE-DCM) trial: study design. Regen Med. 2011;6(4):525–33.  https://doi.org/10.2217/rme.11.29.CrossRefPubMedGoogle Scholar
  269. 269.
    Pincott ES, Ridout D, Brocklesby M, McEwan A, Muthurangu V, Burch M. A randomized study of autologous bone marrow-derived stem cells in pediatric cardiomyopathy. J Heart Lung Transplant. 2017;36(8):837–44.  https://doi.org/10.1016/j.healun.2017.01.008.CrossRefPubMedGoogle Scholar
  270. 270.
    Schmitt JP, Debold EP, Ahmad F, Armstrong A, Frederico A, Conner DA, Mende U, Lohse MJ, Warshaw D, Seidman CE, Seidman JG. Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function. Proc Natl Acad Sci U S A. 2006;103(39):14525–30.  https://doi.org/10.1073/pnas.0606383103.CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Chun JL, O’Brien R, Berry SE. Cardiac dysfunction and pathology in the dystrophin and utrophin-deficient mouse during development of dilated cardiomyopathy. Neuromuscul Disord NMD. 2012;22(4):368–79.  https://doi.org/10.1016/j.nmd.2011.07.003.CrossRefPubMedGoogle Scholar
  272. 272.
    Omens JH, Usyk TP, Li Z, McCulloch AD. Muscle LIM protein deficiency leads to alterations in passive ventricular mechanics. Am J Physiol Heart Circ Physiol. 2002;282(2):H680–7.  https://doi.org/10.1152/ajpheart.00773.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  273. 273.
    D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn GW. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A. 1997;94(15):8121–6.PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS. Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ Res. 1996;78(5):893–902.PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Wilson DW, Oslund KL, Lyons B, Foreman O, Burzenski L, Svenson KL, Chase TH, Shultz LD. Inflammatory dilated cardiomyopathy in Abcg5-deficient mice. Toxicol Pathol. 2013;41(6):880–92.  https://doi.org/10.1177/0192623312466191.CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    Fentzke RC, Korcarz CE, Lang RM, Lin H, Leiden JM. Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest. 1998;101(11):2415–26.  https://doi.org/10.1172/JCI2950.CrossRefPubMedPubMedCentralGoogle Scholar
  277. 277.
    Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res. 1997;81(4):627–35.PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Hall DG, Morley GE, Vaidya D, Ard M, Kimball TR, Witt SA, Colbert MC. Early onset heart failure in transgenic mice with dilated cardiomyopathy. Pediatr Res. 2000;48(1):36–42.  https://doi.org/10.1203/00006450-200007000-00009.CrossRefPubMedPubMedCentralGoogle Scholar
  279. 279.
    Sussman MA, Welch S, Cambon N, Klevitsky R, Hewett TE, Price R, Witt SA, Kimball TR. Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. J Clin Invest. 1998;101(1):51–61.  https://doi.org/10.1172/JCI1167.CrossRefPubMedPubMedCentralGoogle Scholar
  280. 280.
    Maddatu TP, Garvey SM, Schroeder DG, Zhang W, Kim S-Y, Nicholson AI, Davis CJ, Cox GA. Dilated cardiomyopathy in the Nmd mouse: transgenic rescue and QTLs that improve cardiac function and survival. Hum Mol Genet. 2005;14(21):3179–89.  https://doi.org/10.1093/hmg/ddi349.CrossRefPubMedPubMedCentralGoogle Scholar
  281. 281.
    Xu J, Gong NL, Bodi I, Aronow BJ, Backx PH, Molkentin JD. Myocyte enhancer factors 2A and 2C induce dilated cardiomyopathy in transgenic mice. J Biol Chem. 2006;281(14):9152–62.  https://doi.org/10.1074/jbc.M510217200.CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Hamada H, Suzuki M, Yuasa S, Mimura N, Shinozuka N, Takada Y, Suzuki M, Nishino T, Nakaya H, Koseki H, Aoe T. Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Mol Cell Biol. 2004;24(18):8007–17.  https://doi.org/10.1128/MCB.24.18.8007-8017.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Zheng M, Cheng H, Li X, Zhang J, Cui L, Ouyang K, Han L, Zhao T, Gu Y, Dalton ND, Bang M-L, Peterson KL, Chen J. Cardiac-specific ablation of cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum Mol Genet. 2009;18(4):701–13.  https://doi.org/10.1093/hmg/ddn400.CrossRefPubMedPubMedCentralGoogle Scholar
  284. 284.
    Li Z, Ai T, Samani K, Xi Y, Tzeng H-P, Xie M, Wu S, Ge S, Taylor MD, Dong J-W, Cheng J, Ackerman MJ, Kimura A, Sinagra G, Brunelli L, Faulkner G, Vatta M. A ZASP missense mutation, S196L, leads to cytoskeletal and electrical abnormalities in a mouse model of cardiomyopathy. Circ Arrhythm Electrophysiol. 2010;3(6):646–56.  https://doi.org/10.1161/CIRCEP.109.929240.CrossRefPubMedPubMedCentralGoogle Scholar
  285. 285.
    Ferreira-Cornwell MC, Luo Y, Narula N, Lenox JM, Lieberman M, Radice GL. Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J Cell Sci. 2002;115(Pt 8):1623–34.PubMedPubMedCentralGoogle Scholar
  286. 286.
    Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, Schaefer E, Yager K. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active Rac1. J Clin Invest. 2000;105(7):875–86.  https://doi.org/10.1172/JCI8497.CrossRefPubMedPubMedCentralGoogle Scholar
  287. 287.
    Lee D, Oka T, Hunter B, Robinson A, Papp S, Nakamura K, Srisakuldee W, Nickel BE, Light PE, Dyck JRB, Lopaschuk GD, Kardami E, Opas M, Michalak M. Calreticulin induces dilated cardiomyopathy. PLoS One. 2013;8(2):e56387.  https://doi.org/10.1371/journal.pone.0056387.CrossRefPubMedPubMedCentralGoogle Scholar
  288. 288.
    Cho MC, Rapacciuolo A, Koch WJ, Kobayashi Y, Jones LR, Rockman HA. Defective beta-adrenergic receptor signaling precedes the development of dilated cardiomyopathy in transgenic mice with calsequestrin overexpression. J Biol Chem. 1999;274(32):22251–6.PubMedCrossRefPubMedCentralGoogle Scholar
  289. 289.
    Vanhoutte L, Guilbaud C, Martherus R, Bouzin C, Gallez B, Dessy C, Balligand J-L, Moniotte S, Feron O. MRI assessment of cardiomyopathy induced by Β1-adrenoreceptor autoantibodies and protection through Β3-adrenoreceptor overexpression. Sci Rep. 2017;7:43951.  https://doi.org/10.1038/srep43951.CrossRefPubMedPubMedCentralGoogle Scholar
  290. 290.
    Lemire I, Ducharme A, Tardif JC, Poulin F, Jones LR, Allen BG, Hébert TE, Rindt H. Cardiac-directed overexpression of wild-type Alpha1B-adrenergic receptor induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2001;281(2):H931–8.  https://doi.org/10.1152/ajpheart.2001.281.2.H931.CrossRefPubMedPubMedCentralGoogle Scholar
  291. 291.
    Crone SA, Zhao Y-Y, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL, Chen J, Kahn R, Condorelli G, Ross J, Chien KR, Lee K-F. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med. 2002;8(5):459–65.  https://doi.org/10.1038/nm0502-459.CrossRefPubMedPubMedCentralGoogle Scholar
  292. 292.
    Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11(4):376–81.  https://doi.org/10.1038/ng1295-376.CrossRefPubMedPubMedCentralGoogle Scholar
  293. 293.
    Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science (New York, NY). 2001;291(5502):319–22.  https://doi.org/10.1126/science.291.5502.319.CrossRefGoogle Scholar
  294. 294.
    Matsumori A, Kawai C. An animal model of congestive (dilated) cardiomyopathy: dilatation and hypertrophy of the heart in the chronic stage in DBA/2 mice with myocarditis caused by encephalomyocarditis virus. Circulation. 1982;66(2):355–60.PubMedCrossRefGoogle Scholar
  295. 295.
    Eigenthaler M, Engelhardt S, Schinke B, Kobsar A, Schmitteckert E, Gambaryan S, Engelhardt CM, Krenn V, Eliava M, Jarchau T, Lohse MJ, Walter U, Hein L. Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2003;285(6):H2471–81.  https://doi.org/10.1152/ajpheart.00362.2003.CrossRefPubMedGoogle Scholar
  296. 296.
    Kuwahara K, Saito Y, Takano M, Arai Y, Yasuno S, Nakagawa Y, Takahashi N, Adachi Y, Takemura G, Horie M, Miyamoto Y, Morisaki T, Kuratomi S, Noma A, Fujiwara H, Yoshimasa Y, Kinoshita H, Kawakami R, Kishimoto I, Nakanishi M, Usami S, Saito Y, Harada M, Nakao K. NRSF regulates the fetal cardiac gene program and maintains normal cardiac structure and function. EMBO J. 2003;22(23):6310–21.  https://doi.org/10.1093/emboj/cdg601.CrossRefPubMedPubMedCentralGoogle Scholar
  297. 297.
    Zemljic-Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD, Ross RS. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol. 2007;27(21):7522–37.  https://doi.org/10.1128/MCB.00728-07.CrossRefPubMedPubMedCentralGoogle Scholar
  298. 298.
    Elliott JF, Liu J, Yuan Z-N, Bautista-Lopez N, Wallbank SL, Suzuki K, Rayner D, Nation P, Robertson MA, Liu G, Kavanagh KM. Autoimmune cardiomyopathy and heart block develop spontaneously in HLA-DQ8 transgenic IAbeta knockout NOD mice. Proc Natl Acad Sci U S A. 2003;100(23):13447–52.  https://doi.org/10.1073/pnas.2235552100.CrossRefPubMedPubMedCentralGoogle Scholar
  299. 299.
    Son N-H, Park T-S, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs MJ, Huang L-S, Goldberg IJ. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest. 2007;117(10):2791–801.  https://doi.org/10.1172/JCI30335.CrossRefPubMedPubMedCentralGoogle Scholar
  300. 300.
    Song W, Dyer E, Stuckey D, Leung M-C, Memo M, Mansfield C, Ferenczi M, Liu K, Redwood C, Nowak K, Harding S, Clarke K, Wells D, Marston S. Investigation of a transgenic mouse model of familial dilated cardiomyopathy. J Mol Cell Cardiol. 2010;49(3):380–9.  https://doi.org/10.1016/j.yjmcc.2010.05.009.CrossRefPubMedGoogle Scholar
  301. 301.
    Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG. A mouse model of familial hypertrophic cardiomyopathy. Science (New York, NY). 1996;272(5262):731–4.CrossRefGoogle Scholar
  302. 302.
    Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT, Brugada R, DeMayo F, Quinones M, Roberts R. A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest. 1999;104(12):1683–92.  https://doi.org/10.1172/JCI7956.CrossRefPubMedPubMedCentralGoogle Scholar
  303. 303.
    Tardiff JC, Factor SM, Tompkins BD, Hewett TE, Palmer BM, Moore RL, Schwartz S, Robbins J, Leinwand LA. A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. J Clin Invest. 1998;101(12):2800–11.  https://doi.org/10.1172/JCI2389.CrossRefPubMedPubMedCentralGoogle Scholar
  304. 304.
    Tardiff JC, Hewett TE, Palmer BM, Olsson C, Factor SM, Moore RL, Robbins J, Leinwand LA. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest. 1999;104(4):469–81.  https://doi.org/10.1172/JCI6067.CrossRefPubMedPubMedCentralGoogle Scholar
  305. 305.
    Harada K, Potter JD. Familial hypertrophic cardiomyopathy mutations from different functional regions of troponin T result in different effects on the PH and Ca2+ sensitivity of cardiac muscle contraction. J Biol Chem. 2004;279(15):14488–95.  https://doi.org/10.1074/jbc.M309355200.CrossRefPubMedGoogle Scholar
  306. 306.
    Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J. A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J Clin Invest. 1998;102(7):1292–300.  https://doi.org/10.1172/JCI3880.CrossRefPubMedPubMedCentralGoogle Scholar
  307. 307.
    Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J. In vivo modeling of myosin binding protein C familial hypertrophic cardiomyopathy. Circ Res. 1999;85(9):841–7.PubMedCrossRefGoogle Scholar
  308. 308.
    Muthuchamy M, Pieples K, Rethinasamy P, Hoit B, Grupp IL, Boivin GP, Wolska B, Evans C, Solaro RJ, Wieczorek DF. Mouse model of a familial hypertrophic cardiomyopathy mutation in alpha-tropomyosin manifests cardiac dysfunction. Circ Res. 1999;85(1):47–56.PubMedCrossRefGoogle Scholar
  309. 309.
    Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, Masaki T, Toyo-oka T, Hanaoka F. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci U S A. 1997;94(25):13873–8.PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Kittleson MD, Meurs KM, Munro MJ, Kittleson JA, Liu SK, Pion PD, Towbin JA. Familial hypertrophic cardiomyopathy in maine coon cats: an animal model of human disease. Circulation. 1999;99(24):3172–80.PubMedCrossRefGoogle Scholar
  311. 311.
    Welikson RE, Buck SH, Patel JR, Moss RL, Vikstrom KL, Factor SM, Miyata S, Weinberger HD, Leinwand LA. Cardiac myosin heavy chains lacking the light chain binding domain cause hypertrophic cardiomyopathy in mice. Am J Phys. 1999;276(6 Pt 2):H2148–58.Google Scholar
  312. 312.
    Lutucuta S, Tsybouleva N, Ishiyama M, Defreitas G, Wei L, Carabello B, Marian AJ. Induction and reversal of cardiac phenotype of human hypertrophic cardiomyopathy mutation cardiac troponin T-Q92 in switch on-switch off bigenic mice. J Am Coll Cardiol. 2004;44(11):2221–30.  https://doi.org/10.1016/j.jacc.2004.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  313. 313.
    James J, Zhang Y, Osinska H, Sanbe A, Klevitsky R, Hewett TE, Robbins J. Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res. 2000;87(9):805–11.PubMedCrossRefGoogle Scholar
  314. 314.
    Kerrick WGL, Kazmierczak K, Xu Y, Wang Y, Szczesna-Cordary D. Malignant familial hypertrophic cardiomyopathy D166V mutation in the ventricular myosin regulatory light chain causes profound effects in skinned and intact papillary muscle fibers from transgenic mice. FASEB J Off Publ Fed Am Soc Exp Biol. 2009;23(3):855–65.  https://doi.org/10.1096/fj.08-118182.CrossRefGoogle Scholar
  315. 315.
    Du J, Liu J, Feng H-Z, Hossain MM, Gobara N, Zhang C, Li Y, Jean-Charles P-Y, Jin J-P, Huang X-P. Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy mutation, R193H, in cardiac TnI. Am J Physiol Heart Circ Physiol. 2008;294(6):H2604–13.  https://doi.org/10.1152/ajpheart.91506.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  316. 316.
    Dvornikov AV, Smolin N, Zhang M, Martin JL, Robia SL, de Tombe PP. Restrictive cardiomyopathy troponin I R145W mutation does not perturb myofilament length-dependent activation in human cardiac sarcomeres. J Biol Chem. 2016;291(41):21817–28.  https://doi.org/10.1074/jbc.M116.746172.CrossRefPubMedPubMedCentralGoogle Scholar
  317. 317.
    Heuser A, Plovie ER, Ellinor PT, Grossmann KS, Shin JT, Wichter T, Basson CT, Lerman BB, Sasse-Klaassen S, Thierfelder L, MacRae CA, Gerull B. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2006;79(6):1081–8.  https://doi.org/10.1086/509044.CrossRefPubMedPubMedCentralGoogle Scholar
  318. 318.
    Meurs KM, Lacombe VA, Dryburgh K, Fox PR, Reiser PR, Kittleson MD. Differential expression of the cardiac ryanodine receptor in normal and arrhythmogenic right ventricular cardiomyopathy canine hearts. Hum Genet. 2006;120(1):111–8.  https://doi.org/10.1007/s00439-006-0193-2.CrossRefPubMedGoogle Scholar
  319. 319.
    Kannankeril PJ, Mitchell BM, Goonasekera SA, Chelu MG, Zhang W, Sood S, Kearney DL, Danila CI, De Biasi M, Wehrens XHT, Pautler RG, Roden DM, Taffet GE, Dirksen RT, Anderson ME, Hamilton SL. Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc Natl Acad Sci U S A. 2006;103(32):12179–84.  https://doi.org/10.1073/pnas.0600268103.CrossRefPubMedPubMedCentralGoogle Scholar
  320. 320.
    Asano Y, Takashima S, Asakura M, Shintani Y, Liao Y, Minamino T, Asanuma H, Sanada S, Kim J, Ogai A, Fukushima T, Oikawa Y, Okazaki Y, Kaneda Y, Sato M, Miyazaki J, Kitamura S, Tomoike H, Kitakaze M, Hori M. Lamr1 functional retroposon causes right ventricular dysplasia in mice. Nat Genet. 2004;36(2):123–30.  https://doi.org/10.1038/ng1294.CrossRefPubMedGoogle Scholar
  321. 321.
    Yang Z, Bowles NE, Scherer SE, Taylor MD, Kearney DL, Ge S, Nadvoretskiy VV, DeFreitas G, Carabello B, Brandon LI, Godsel LM, Green KJ, Saffitz JE, Li H, Danieli GA, Calkins H, Marcus F, Towbin JA. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Res. 2006;99(6):646–55.  https://doi.org/10.1161/01.RES.0000241482.19382.c6.CrossRefPubMedGoogle Scholar
  322. 322.
    Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, Marian AJ. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116(7):2012–21.  https://doi.org/10.1172/JCI27751.CrossRefPubMedPubMedCentralGoogle Scholar
  323. 323.
    Cruz FM, Sanz-Rosa D, Roche-Molina M, García-Prieto J, García-Ruiz JM, Pizarro G, Jiménez-Borreguero LJ, Torres M, Bernad A, Ruíz-Cabello J, Fuster V, Ibáñez B, Bernal JA. Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J Am Coll Cardiol. 2015;65(14):1438–50.  https://doi.org/10.1016/j.jacc.2015.01.045.CrossRefPubMedGoogle Scholar
  324. 324.
    Kirchhof P, Fabritz L, Zwiener M, Witt H, Schäfers M, Zellerhoff S, Paul M, Athai T, Hiller K-H, Baba HA, Breithardt G, Ruiz P, Wichter T, Levkau B. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation. 2006;114(17):1799–806.  https://doi.org/10.1161/CIRCULATIONAHA.106.624502.CrossRefPubMedGoogle Scholar
  325. 325.
    Martin ED, Moriarty MA, Byrnes L, Grealy M. Plakoglobin has both structural and signalling roles in zebrafish development. Dev Biol. 2009;327(1):83–96.  https://doi.org/10.1016/j.ydbio.2008.11.036.CrossRefPubMedGoogle Scholar
  326. 326.
    Nielsen LB, Bartels ED, Bollano E. Overexpression of apolipoprotein B in the heart impedes cardiac triglyceride accumulation and development of cardiac dysfunction in diabetic mice. J Biol Chem. 2002;277(30):27014–20.  https://doi.org/10.1074/jbc.M203458200.CrossRefPubMedGoogle Scholar
  327. 327.
    Vogel WM, Apstein CS. Effects of alloxan-induced diabetes on ischemia-reperfusion injury in rabbit hearts. Circ Res. 1988;62(5):975–82.PubMedCrossRefGoogle Scholar
  328. 328.
    Song Y, Du Y, Prabhu SD, Epstein PN. Diabetic cardiomyopathy in OVE26 mice shows mitochondrial ROS production and divergence between in vivo and in vitro contractility. Rev Diabet Stud RDS. 2007;4(3):159–68.  https://doi.org/10.1900/RDS.2007.4.159.CrossRefPubMedGoogle Scholar
  329. 329.
    Basu R, Oudit GY, Wang X, Zhang L, Ussher JR, Lopaschuk GD, Kassiri Z. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol. 2009;297(6):H2096–108.  https://doi.org/10.1152/ajpheart.00452.2009.CrossRefPubMedGoogle Scholar
  330. 330.
    Barouch LA, Berkowitz DE, Harrison RW, O’Donnell CP, Hare JM. Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation. 2003;108(6):754–9.  https://doi.org/10.1161/01.CIR.0000083716.82622.FD.CrossRefPubMedGoogle Scholar
  331. 331.
    Huynh K, Kiriazis H, Du X-J, Love JE, Jandeleit-Dahm KA, Forbes JM, McMullen JR, Ritchie RH. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the Db/Db mouse model of type 2 diabetes. Diabetologia. 2012;55(5):1544–53.  https://doi.org/10.1007/s00125-012-2495-3.CrossRefPubMedGoogle Scholar
  332. 332.
    van den Brom CE, Bosmans JWAM, Vlasblom R, Handoko LM, Huisman MC, Lubberink M, Molthoff CFM, Lammertsma AA, Ouwens MD, Diamant M, Boer C. Diabetic cardiomyopathy in Zucker diabetic fatty rats: the forgotten right ventricle. Cardiovasc Diabetol. 2010;9:25.  https://doi.org/10.1186/1475-2840-9-25.CrossRefPubMedPubMedCentralGoogle Scholar
  333. 333.
    Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A. 2003;100(3):1226–31.  https://doi.org/10.1073/pnas.0336724100.CrossRefPubMedPubMedCentralGoogle Scholar
  334. 334.
    Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. 2001;107(7):813–22.  https://doi.org/10.1172/JCI10947.CrossRefPubMedPubMedCentralGoogle Scholar
  335. 335.
    Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, Kako Y, Seo T, Hu Y, Lutz EP, Merkel M, Bensadoun A, Homma S, Goldberg IJ. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest. 2003;111(3):419–26.  https://doi.org/10.1172/JCI16751.CrossRefPubMedPubMedCentralGoogle Scholar
  336. 336.
    Flagg TP, Cazorla O, Remedi MS, Haim TE, Tones MA, Bahinski A, Numann RE, Kovacs A, Schaffer JE, Nichols CG, Nerbonne JM. Ca2+-independent alterations in diastolic sarcomere length and relaxation kinetics in a mouse model of lipotoxic diabetic cardiomyopathy. Circ Res. 2009;104(1):95–103.  https://doi.org/10.1161/CIRCRESAHA.108.186809.CrossRefPubMedGoogle Scholar
  337. 337.
    Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD, Walsh RA, King GL. Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci U S A. 1997;94(17):9320–5.PubMedPubMedCentralCrossRefGoogle Scholar
  338. 338.
    Cittadini A, Mantzoros CS, Hampton TG, Travers KE, Katz SE, Morgan JP, Flier JS, Douglas PS. Cardiovascular abnormalities in transgenic mice with reduced brown fat: an animal model of human obesity. Circulation. 1999;100(21):2177–83.PubMedCrossRefGoogle Scholar
  339. 339.
    Boudina S, Bugger H, Sena S, O’Neill BT, Zaha VG, Ilkun O, Wright JJ, Mazumder PK, Palfreyman E, Tidwell TJ, Theobald H, Khalimonchuk O, Wayment B, Sheng X, Rodnick KJ, Centini R, Chen D, Litwin SE, Weimer BE, Abel ED. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation. 2009;119(9):1272–83.  https://doi.org/10.1161/CIRCULATIONAHA.108.792101.CrossRefPubMedPubMedCentralGoogle Scholar
  340. 340.
    Domenighetti AA, Danes VR, Curl CL, Favaloro JM, Proietto J, Delbridge LMD. Targeted GLUT-4 deficiency in the heart induces cardiomyocyte hypertrophy and impaired contractility linked with Ca(2+) and proton flux dysregulation. J Mol Cell Cardiol. 2010;48(4):663–72.  https://doi.org/10.1016/j.yjmcc.2009.11.017.CrossRefPubMedGoogle Scholar
  341. 341.
    Wölkart G, Schrammel A, Dörffel K, Haemmerle G, Zechner R, Mayer B. Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist. Br J Pharmacol. 2012;165(2):380–9.  https://doi.org/10.1111/j.1476-5381.2011.01490.x.CrossRefPubMedPubMedCentralGoogle Scholar
  342. 342.
    Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanović S, Mouton V, Kahn CR, Lucocq JM, Gray GA, Jovanović A, Alessi DR. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J. 2003;22(18):4666–76.  https://doi.org/10.1093/emboj/cdg469.CrossRefPubMedPubMedCentralGoogle Scholar
  343. 343.
    Ritchie RH, Love JE, Huynh K, Bernardo BC, Henstridge DC, Kiriazis H, Tham YK, Sapra G, Qin C, Cemerlang N, Boey EJH, Jandeleit-Dahm K, Du X-J, McMullen JR. Enhanced phosphoinositide 3-kinase(P110α) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia. 2012;55(12):3369–81.  https://doi.org/10.1007/s00125-012-2720-0.CrossRefPubMedGoogle Scholar
  344. 344.
    Li H, Wang X, Mao Y, Hu R, Xu W, Lei Z, Zhou N, Jin L, Guo T, Li Z, Irwin DM, Niu G, Tan H. Long term liver specific glucokinase gene defect induced diabetic cardiomyopathy by up regulating NADPH oxidase and down regulating insulin receptor and P-AMPK. Cardiovasc Diabetol. 2014;13:24.  https://doi.org/10.1186/1475-2840-13-24.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saranya Ravi
    • 1
  • Monte S. Willis
    • 2
  • Jonathan C. Schisler
    • 1
    • 3
  1. 1.The McAllister Heart InstituteThe University of North Carolina at Chapel HillChapel HillUSA
  2. 2.Indiana Center for Musculoskeletal Health and Department of PathologyKrannert Cardiology Institute Department of Medicine, Indiana University School of MedicineIndianapolisUSA
  3. 3.Department of Pharmacology and Department of Pathology and Lab MedicineMcAllister Heart Institute, The University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations