How Disease Risks Can Impact the Evolution of Social Behaviors and Emergent Population Organization

  • Nakeya D. Williams
  • Heather Z. Brooks
  • Maryann E. Hohn
  • Candice R. PriceEmail author
  • Ami E. Radunskaya
  • Suzanne S. Sindi
  • Shelby N. Wilson
  • Nina H. Fefferman
Part of the Association for Women in Mathematics Series book series (AWMS, volume 14)


Individuals living in social groups are susceptible to disease spread through their social networks. The network’s structure including group stability, clustering, and an individual’s behavior and affiliation choice all have some impact on the effect of disease spread. Moreover, under certain scenarios, a social group may change its own structure to suppress the transmission of infectious disease. While many studies have focused on how different network structures shape the disease dynamics, relatively few have directly considered the equally important evolutionary question of how disease dynamics shape the success of social systems. In this paper, we summarize the relevant mathematical and biological literature on evolutionary theory and population network structure to discuss what is known about how the synergistic effects of network-based epidemiology of infection and social behavior can shape the evolution of social behaviors and the population structures that emerge from them. We close by discussing open questions, including how these insights may shift when instead considering macro-parasites as the infection spreading on the network.


  1. 1.
    J.G. Ali, A.A. Agrawal, Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17(5), 293–302 (2012)CrossRefGoogle Scholar
  2. 2.
    R.M. Anderson, R.M. May, B. Anderson, Infectious Diseases of Humans: Dynamics and Control, vol. 28 (Wiley Online Library, 1992)Google Scholar
  3. 3.
    R.M. Axelrod, The Evolution of Cooperation, Revised Edition (Basic Books, New York, 2006)Google Scholar
  4. 4.
    S. Bansal, J. Read, B. Pourbohloul, L.A. Meyers, The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 4(5), 478–489 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A.-L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Bordes, D.T. Blumstein, S. Morand, Rodent sociality and parasite diversity. Biol. Lett. 3(6), 692–694 (2007)CrossRefGoogle Scholar
  7. 7.
    W. Bossert, C.X. Qi, J.A. Weymark, Measuring group fitness in a biological hierarchy: an axiomatic social choice approach. Econ. Philos. 29(3), 301–323 (2013)CrossRefGoogle Scholar
  8. 8.
    C.R. Brown, N. Komar, S.B. Quick, R.A. Sethi, N.A. Panella, M.B. Brown, M. Pfeffer, Arbovirus infection increases with group size. Proc. R. Soc. Lond. B: Biol. Sci. 268(1478), 1833–1840 (2001)CrossRefGoogle Scholar
  9. 9.
    T. Caraco, Risk-sensitivity and foraging groups. Ecology 62(3), 527–531 (1981)CrossRefGoogle Scholar
  10. 10.
    R.M. Christley, G. Pinchbeck, R. Bowers, D. Clancy, N. French, R. Bennett, J. Turner, Infection in social networks: using network analysis to identify high-risk individuals. Am. J. Epidemiol. 162(10), 1024–1031 (2005)CrossRefGoogle Scholar
  11. 11.
    V. Colizza, A. Barrat, M. Barthélemy, A. Vespignani, The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Nat. Acad. Sci. U.S.A. 103(7), 2015–2020 (2006)CrossRefGoogle Scholar
  12. 12.
    L. Conradt, T.J. Roper, Group decision-making in animals. Nature 421(6919), 155–158 (2003)CrossRefGoogle Scholar
  13. 13.
    D.P. Croft, S.K. Darden, T.W. Wey, Current directions in animal social networks. Curr. Opin. Behav. Sci. 12, 52–58 (2016)CrossRefGoogle Scholar
  14. 14.
    A.J. De Froment, Fighting for Information: Decision-Making, Animal Contests and the Emergence of Social Hierarchy (Princeton University, Princeton, 2010)Google Scholar
  15. 15.
    O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, vol. 5. (Wiley, New York, 2000)zbMATHGoogle Scholar
  16. 16.
    C. Ejike, C.B. Schreck, Stress and social hierarchy rank in coho salmon. Trans. Am. Fish. Soc. 109(4), 423–426 (1980)CrossRefGoogle Scholar
  17. 17.
    S. Everton, Social networks and religious violence. Rev. Relig. Res. 58(2), 191–217 (2016)CrossRefGoogle Scholar
  18. 18.
    D.R. Farine, H. Whitehead, Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84(5), 1144–1163 (2015)CrossRefGoogle Scholar
  19. 19.
    N.H. Fefferman, K.L. Ng, How disease models in static networks can fail to approximate disease in dynamic networks. Phys. Rev. E 76, 031919 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    N.H. Fefferman, K.L. Ng, The role of individual choice in the evolution of social complexity. Ann. Zool. Fenn. 44, 58–69 (2007)Google Scholar
  21. 21.
    V.A. Formica, C. Wood, W. Larsen, R. Butterfield, M. Augat, H. Hougen, E. Brodie, Fitness consequences of social network position in a wild population of forked fungus beetles (Bolitotherus cornutus). J. Evol. Biol. 25(1), 130–137 (2012)CrossRefGoogle Scholar
  22. 22.
    L.K. Gallos, N.H. Fefferman, The effect of disease-induced mortality on structural network properties. PLoS One 10(8), e0136704 (2015)CrossRefGoogle Scholar
  23. 23.
    L.K. Gallos, H.A. Makse, M. Sigman, A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc. Nat. Acad. Sci. 109(8), 2825–2830 (2012)CrossRefGoogle Scholar
  24. 24.
    G.F. Gauze, The Struggle for Existence (Hafner, New York, 1934)CrossRefGoogle Scholar
  25. 25.
    C.K. Ghalambor, J.A. Walker, D.N. Reznick, Multi-trait selection, adaptation, and constraints on the evolution of burst swimming performance. Integr. Comp. Biol. 43(3), 431–438 (2003)CrossRefGoogle Scholar
  26. 26.
    M.S. Giorgi, R. Arlettaz, P. Christe, P. Vogel, The energetic grooming costs imposed by a parasitic mite (Spinturnix myoti) upon its bat host (Myotis myotis). Proc. R. Soc. Lond. B: Biol. Sci. 268(1480), 2071–2075 (2001)CrossRefGoogle Scholar
  27. 27.
    L. Glowacki, A. Isakov, R.W. Wrangham, R. McDermott, J.H. Fowler, N.A. Christakis, Formation of raiding parties for intergroup violence is mediated by social network structure. Proc. Natl. Acad. Sci. 113, 201610961 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Gomez-Rodriguez, J. Leskovec, B. Schölkopf. Structure and dynamics of information pathways in online media, in Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (ACM, 2013), pp. 23–32Google Scholar
  29. 29.
    B.R. Greening, N.H. Fefferman, Evolutionary significance of the role of family units in a broader social system. Sci. Rep. 4, 3608 (2014)CrossRefGoogle Scholar
  30. 30.
    B.R. Greening Jr., N. Pinter-Wollman, N.H. Fefferman, Higher-order interactions: understanding the knowledge capacity of social groups using simplicial sets. Curr. Zool. 61(1), 114–127 (2015)CrossRefGoogle Scholar
  31. 31.
    W.D. Hamilton, The evolution of altruistic behavior. Am. Nat. 97(896), 354–356 (1963)CrossRefGoogle Scholar
  32. 32.
    B.L. Hart, Behavioral adaptations to pathogens and parasites: five strategies. Neurosci. Biobehav. Rev. 14(3), 273–294 (1990)CrossRefGoogle Scholar
  33. 33.
    H. Heesterbeek, R.M. Anderson, V. Andreasen, S. Bansal, D. De Angelis, C. Dye, K.T.D. Eames, W.J. Edmunds, S.D.W. Frost, S. Funk, T.D. Hollingsworth, T. House, V. Isham, P. Klepac, J. Lessler, J.O. Lloyd-Smith, C.J.E. Metcalf, D. Mollison, L. Pellis, J.R.C. Pulliam, M.G. Roberts, C. Viboud, Modeling infectious disease dynamics in the complex landscape of global health. Science 347(6227) (2015)CrossRefGoogle Scholar
  34. 34.
    K. Hock, N.H. Fefferman, Extending the role of social networks to study social organization and interaction structure of animal groups. Ann. Zool. Fenn. 48(6), 365–370 (2011)CrossRefGoogle Scholar
  35. 35.
    K. Hock, N.H. Fefferman, Violating social norms when choosing friends: how rule-breakers affect social networks. PLoS One 6(10), 1–6, 10 (2011)CrossRefGoogle Scholar
  36. 36.
    K. Hock, N.H. Fefferman, Social organization patterns can lower disease risk without associated disease avoidance or immunity. Ecol. Complex. 12, 34–42 (2012)CrossRefGoogle Scholar
  37. 37.
    K. Hock, R. Huber, Modeling the acquisition of social rank in crayfish: winner and loser effects and self-structuring properties. Behaviour 143(3), 325–346 (2006)CrossRefGoogle Scholar
  38. 38.
    K. Hock, K.L. Ng, N.H. Fefferman, Systems approach to studying animal sociality: Individual position versus group organization in dynamic social network models. PLoS One 5(12) (2010). CrossRefGoogle Scholar
  39. 39.
    J.L. Hoogland, Aggression, ectoparasitism, and other possible costs of prairie dog (Sciuridae, Cynomys spp.) coloniality. Behaviour 69(1), 1–34 (1979)MathSciNetCrossRefGoogle Scholar
  40. 40.
    M.J. Keeling, K.T. Eames, Networks and epidemic models. J. R. Soc. Interface 2(4), 295–307 (2005)CrossRefGoogle Scholar
  41. 41.
    J. Korb, J. Heinze, Multilevel selection and social evolution of insect societies. Naturwissenschaften 91(6), 291–304 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Korb, J. Heinze, Major hurdles for the evolution of sociality. Annu. Rev. Entomol. 61 (2016)CrossRefGoogle Scholar
  43. 43.
    J. Krause, R. James, D.W. Franks, D.P. Croft, Animal Social Networks (Oxford University Press, New York, 2014)CrossRefGoogle Scholar
  44. 44.
    R.H. Kurvers, J. Krause, D.P. Croft, A.D. Wilson, M. Wolf, The evolutionary and ecological consequences of animal social networks: emerging issues. Trends Ecol. Evol. 29(6), 326–335 (2014)CrossRefGoogle Scholar
  45. 45.
    H. Lange, O. Leimar, Social stability and daily body mass gain in great tits. Behav. Ecol. 15(4), 549–554 (2004)CrossRefGoogle Scholar
  46. 46.
    Y. Li, M. Qian, D. Jin, P. Hui, A.V. Vasilakos, Revealing the efficiency of information diffusion in online social networks of microblog. Inform. Sci. 293, 383–389 (2015)CrossRefGoogle Scholar
  47. 47.
    Z. Liu, Y.-C. Lai, N. Ye, Propagation and immunization of infection on general networks with both homogeneous and heterogeneous components. Phy. Rev. E 67(3), 031911 (2003)Google Scholar
  48. 48.
    V. Marceau, P.-A. Noël, L. Hébert-Dufresne, A. Allard, L.J. Dubé, Adaptive networks: coevolution of disease and topology. Phys. Rev. E 82(3), 036116 (2010)Google Scholar
  49. 49.
    R.M. May, A.L. Lloyd, Infection dynamics on scale-free networks. Phys. Rev. E 64(6), 066112 (2001)Google Scholar
  50. 50.
    J. Moore, Parasites and the Behavior of Animals (Oxford University Press, Oxford, 2002)Google Scholar
  51. 51.
    M.S. Mooring, B.L. Hart, Costs of allogrooming in impala: distraction from vigilance. Anim. Behav. 49(5), 1414–1416 (1995)CrossRefGoogle Scholar
  52. 52.
    M. Morris, M. Kretzschmar, Concurrent partnerships and the spread of HIV. Aids 11(5), 641–648 (1997)CrossRefGoogle Scholar
  53. 53.
    K.L. Ng, Plasticity in individual choice in social network evolution. Ann. Zool. Fenn. 45(5), 441–448 (2008)CrossRefGoogle Scholar
  54. 54.
    M.A. Nowak, Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)CrossRefGoogle Scholar
  55. 55.
    C.L. Nunn, F. Jordán, C.M. McCabe, J.L. Verdolin, J.H. Fewell, Infectious disease and group size: more than just a numbers game. Phil. Trans. R. Soc. Lond. B: Biol. Sci. 370(1669) (2015)CrossRefGoogle Scholar
  56. 56.
    N. Owen-Smith, Age, size, dominance and reproduction among male kudus: mating enhancement by attrition of rivals. Behav. Ecol. Sociobiol. 32(3) (1993)Google Scholar
  57. 57.
    R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)CrossRefGoogle Scholar
  58. 58.
    R. Pastor-Satorras, A. Vespignani, Epidemic dynamics in finite size scale-free networks. Phys. Rev. E 65(3), 035108 (2002)Google Scholar
  59. 59.
    R. Pastor-Satorras, A. Vespignani, Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)Google Scholar
  60. 60.
    J.E.H. Patterson, K.E. Ruckstuhl, Parasite infection and host group size: a meta-analytical review. Parasitology 140(7), 803–813 (2013)CrossRefGoogle Scholar
  61. 61.
    D.E.L. Promislow, R. Montgomerie, T.E. Martin, Mortality costs of sexual dimorphism in birds. Proc. R. Soc. B: Biol. Sci. 250(1328), 143–150 (1992)CrossRefGoogle Scholar
  62. 62.
    S.A. Rands, G. Cowlishaw, R.A. Pettifor, J.M. Rowcliffe, R.A. Johnstone, Spontaneous emergence of leaders and followers in foraging pairs. Nature 423(6938), 432–434 (2003)CrossRefGoogle Scholar
  63. 63.
    L. Ratcliffe, D.J. Mennill, K.A. Schubert, Social dominance and fitness in black-capped chickadees, in Ecology and Behavior of Chickadees and Titmice: An Integrated Approach (Oxford University Press, Oxford, 2007), pp. 131–147CrossRefGoogle Scholar
  64. 64.
    D.I. Rubenstein, On predation, competition, and the advantages of group living. Perspect. Ethol. 3, 205–231 (1978)CrossRefGoogle Scholar
  65. 65.
    R.M. Sapolsky, Social status and health in humans and other animals. Annu. Rev. Anthropol. 33, 393–418 (2004)CrossRefGoogle Scholar
  66. 66.
    R. Šárová, A.K. Gutmann, M. Špinka, I. Stěhulová, C. Winckler, Important role of dominance in allogrooming behaviour in beef cattle. Appl. Anim. Behav. Sci. 181, 41–48 (2016)CrossRefGoogle Scholar
  67. 67.
    L.B. Shaw, I.B. Schwartz, Fluctuating epidemics on adaptive networks. Phys. Rev. E 77(6), 066101 (2008)Google Scholar
  68. 68.
    A. Springer, P.M. Kappeler, C.L. Nunn, Dynamic vs. static social networks in models of parasite transmission: predicting cryptosporidium spread in wild lemurs. J. Anim. Ecol. 86(3), 419–433 (2017)CrossRefGoogle Scholar
  69. 69.
    A. Stow, D. Briscoe, M. Gillings, M. Holley, S. Smith, R. Leys, T. Silberbauer, C. Turnbull, A. Beattie, Antimicrobial defences increase with sociality in bees. Biol. Lett. 3(4), 422–424 (2007)CrossRefGoogle Scholar
  70. 70.
    F.J. Theis, L.V. Ugelvig, C. Marr, S. Cremer, Opposing effects of allogrooming on disease transmission in ant societies. Phil. Trans. R. Soc. B 370(1669), 20140108 (2015)CrossRefGoogle Scholar
  71. 71.
    C.M. Topaz, L. Ziegelmeier, T. Halverson, Topological data analysis of biological aggregation models. PloS One 10(5), e0126383 (2015)CrossRefGoogle Scholar
  72. 72.
    A. Traulsen, M.A. Nowak, Evolution of cooperation by multilevel selection. Proc. Nat. Acad. Sci. 103(29), 10952–10955 (2006)CrossRefGoogle Scholar
  73. 73.
    P. Turchin, Warfare and the evolution of social complexity: a multilevel-selection approach. Struc. Dyn. 4(3) (2010)Google Scholar
  74. 74.
    N. Ulibarri, T.A. Scott, Linking network structure to collaborative governance. J. Public Adm. Res. Theory 27(1), 163–181 (2016)CrossRefGoogle Scholar
  75. 75.
    P. Van Mieghem, R. Van de Bovenkamp, Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks. Phys. Rev. Lett. 110(10), 108701 (2013)Google Scholar
  76. 76.
    C. Violle, M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, E. Garnier, Let the concept of trait be functional! Oikos 116(5), 882–892 (2007)CrossRefGoogle Scholar
  77. 77.
    D. von Holst, H. Hutzelmeyer, P. Kaetzke, M. Khaschei, R. Schönheiter, Social rank, stress, fitness, and life expectancy in wild rabbits. Naturwissenschaften 86(8), 388–393 (1999)CrossRefGoogle Scholar
  78. 78.
    A.D. Wallach, E.G. Ritchie, J. Read, A.J. O’Neill, More than mere numbers: the impact of lethal control on the social stability of a top-order predator. PLoS One 4(9), e6861 (2009)CrossRefGoogle Scholar
  79. 79.
    N. Weber, S.P. Carter, S.R. Dall, R.J. Delahay, J.L. McDonald, S. Bearhop, R.A. McDonald, Badger social networks correlate with tuberculosis infection. Curr. Biol. 23(20), R915–R916 (2013)CrossRefGoogle Scholar
  80. 80.
    D.S. Wilson, A theory of group selection. Proc. Nat. Acad. Sci. 72(1), 143–146 (1975)CrossRefGoogle Scholar
  81. 81.
    D.S. Wilson, The group selection controversy: history and current status. Annu. Rev. Ecol. Syst. 14(1), 159–187 (1983)CrossRefGoogle Scholar
  82. 82.
    D.S. Wilson, E.O. Wilson, Rethinking the theoretical foundation of sociobiology. Q. Rev. Biol. 82(4), 327–348 (2007)CrossRefGoogle Scholar
  83. 83.
    D.S. Wilson, M. Van Vugt, R. O’Gorman, Multilevel selection theory and major evolutionary transitions: implications for psychological science. Curr. Dir. Psychol. Sci. 17(1), 6–9 (2008)CrossRefGoogle Scholar
  84. 84.
    Q. Wu, M. Small, H. Liu, Superinfection behaviors on scale-free networks with competing strains. J. Nonlinear Sci. 23(1), 113–127 (2013)MathSciNetCrossRefGoogle Scholar
  85. 85.
    M. Zuk, N. Wedell, Parasites and pathogens in sexual selection, in The Evolution of Insect Mating Systems (Oxford University Press, Oxford, 2014), pp. 242–253CrossRefGoogle Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2018

Authors and Affiliations

  • Nakeya D. Williams
    • 1
  • Heather Z. Brooks
    • 2
  • Maryann E. Hohn
    • 3
  • Candice R. Price
    • 4
    Email author
  • Ami E. Radunskaya
    • 5
  • Suzanne S. Sindi
    • 6
  • Shelby N. Wilson
    • 7
  • Nina H. Fefferman
    • 8
  1. 1.United States Military AcademyWest PointUSA
  2. 2.University of UtahSalt Lake CityUSA
  3. 3.University of CaliforniaSanta BarbaraUSA
  4. 4.University of San DiegoSan DiegoUSA
  5. 5.Mathematics DepartmentPomona CollegeClaremontUSA
  6. 6.University of California MercedMercedUSA
  7. 7.Morehouse CollegeAtlantaUSA
  8. 8.University of TennesseeKnoxvilleUSA

Personalised recommendations