Advertisement

Stem Cell Therapy and Regenerative Medicine in the Cornea

  • Christopher D. McTiernan
  • Isabelle Brunette
  • May Griffith
Chapter
Part of the Fundamental Biomedical Technologies book series (FBMT)

Abstract

Currently, full-thickness transplantation with human donor corneas is the most widely accepted treatment for corneal blindness. However, due to a severe shortage of human donor corneas as well as problems associated with the storage, screening, and immune response to allogeneic tissues, there has been a push to develop alternative therapies and materials for corneal tissue repair. Here, we review a range of stem cell-based therapies, prosthetics, and extracellular matrix-derived scaffolds, which have been utilized or are being developed for corneal regeneration in vitro, animal models, and human clinical trials.

Keywords

Cornea Regenerative medicine Stem cell Biomaterial Implant 

References

  1. 1.
    Meek, K. M., & Knupp, C. (2015). Corneal structure and transparency. Progress in Retinal and Eye Research, 49, 1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Jonas, J. B., & Holbach, L. (2005). Central corneal thickness and thickness of the lamina cribrosa in human eyes. Investigative Ophthalmology & Visual Science, 46, 1275–1279.CrossRefGoogle Scholar
  3. 3.
    Maurice, D. M. (1957). The structure and transparency of the cornea. The Journal of Physiology, 136, 263–286.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    McDermott, A. M. (2009). The role of antimicrobial peptides at the ocular surface. Ophthalmic Research, 41, 60–75.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Van Buskirk, E. M. (1989). The anatomy of the limbus. Eye, 3, 101–108.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen, S., Mienaltowski, M. J., & Birk, D. E. (2015). Regulation of corneal stroma extracellular matrix assembly. Experimental Eye Research, 133, 69–80.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Tuft, S. J., & Coster, D. J. (1990). The corneal endothelium. Eye, 4, 389–424.PubMedCrossRefGoogle Scholar
  8. 8.
    Oliva, M. S., Schottman, T., & Gulati, M. (2012). Turning the tide of corneal blindness. Indian Journal of Ophthalmology, 60, 423–427.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gain, P., Jullienne, R., He, Z., et al. (2016). Global survey of corneal transplantation and eye banking. JAMA Ophthalmology, 134, 167–173.PubMedCrossRefGoogle Scholar
  10. 10.
    Williams, K. A., Esterman, A. J., Bartlett, C., Holland, H., Hornsby, N. B., Coster, D. J., et al. (2006). How effective is penetrating corneal transplantation? Factors influencing long-term outcome in multivariate analysis. Transplantation, 81, 896–901.CrossRefGoogle Scholar
  11. 11.
    Lass, J. H., Benetz, B. A., Gal, R. L., Kollman, C., Raghinaru, D., Dontchev, M., et al. (2013). Donor age and factors related to endothelial cell loss ten years after penetrating keratoplasty: Specular Microscopy Ancillary Study. Ophthalmology, 120, 2428–2435.PubMedCrossRefGoogle Scholar
  12. 12.
    Arenas, E., Esquenazi, S., Anwar, M., & Terry, M. (2012). Lamellar corneal transplantation. Survey of Ophthalmology, 57, 510–529.PubMedCrossRefGoogle Scholar
  13. 13.
    Ikada, Y. (2006). Challenges in tissue engineering. Journal of the Royal Society Interface, 3, 589–601.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Chen, Y., Liao, C., Gao, M., Belin, M. W., Wang, M., Yu, H., et al. (2015). Efficacy and safety of corneal transplantation using corneas from foreign donors versus domestic donors: A prospective, randomized, controlled trial. Journal of Ophthalmology, 2015, 178289.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Dua, H. S., & Azuara-Blanco, A. (2000). Limbal stem cells of the corneal epithelium. Survey of Ophthalmology, 44, 415–425.PubMedCrossRefGoogle Scholar
  16. 16.
    Dua, H. S., Gomes, J. A., & Singh, A. (1994). Corneal epithelial wound healing. The British Journal of Ophthalmology, 78, 401–408.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Tseng, S. G., Prabhasawat, P., Barton, K., Gray, T., & Meller, D. (1998). Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Archives of Ophthalmology, 116, 431–441.PubMedCrossRefGoogle Scholar
  18. 18.
    Atallah, M. R., Palioura, S., Perez, V. L., & Amescua, G. (2016). Limbal stem cell transplantation: Current perspectives. Clinical Ophthalmology, 10, 593–602.PubMedGoogle Scholar
  19. 19.
    Baradaran-Rafii, A., Eslani, M., Haq, Z., Shirzadeh, E., Huvard, M. J., & Djalilian, A. R. (2017). Current and upcoming therapies for ocular surface chemical injuries. The Ocular Surface, 15, 48–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Holland, E. J. (2015). Management of limbal stem cell deficiency: A historical perspective, past, present, and future. Cornea, 34, S9–S15.PubMedCrossRefGoogle Scholar
  21. 21.
    Ramachandran, C., Basu, S., Sangwan, V. S., & Balasubramanian, D. (2014). Concise review: The coming of age of stem cell treatment for corneal surface damage. Stem Cells Translational Medicine, 3, 1160–1168.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Vazirani, J., Mariappan, I., Ramamurthy, S., Fatima, S., Basu, S., & Sangwan, V. S. (2016). Surgical management of bilateral limbal stem cell deficiency. The Ocular Surface, 14, 350–364.PubMedCrossRefGoogle Scholar
  23. 23.
    Thoft, R. A. (1977). Conjunctival transplantation. Archives of Ophthalmology, 95, 1425–1427.CrossRefGoogle Scholar
  24. 24.
    Kenyon, K. R., & Tseng, S. C. (1989). Limbal autograft transplantation for ocular surface disorders. Ophthalmology, 96, 709–722 discussion 722–723.CrossRefGoogle Scholar
  25. 25.
    Clearfield, E., Muthappan, V., Wang, X., & Kuo, I. C. (2016). Conjunctival autograft for pterygium. Cochrane Database of Systematic Reviews, 2, CD011349.PubMedGoogle Scholar
  26. 26.
    Rao, S. K., Rajagopal, R., Sitalakshmi, G., & Padmanabhan, P. (1999). Limbal autografting: Comparison of results in the acute and chronic phases of ocular surface burns. Cornea, 18, 164–171.PubMedCrossRefGoogle Scholar
  27. 27.
    Holland, E. J., & Schwartz, G. S. (1996). The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea, 15, 549–556.CrossRefGoogle Scholar
  28. 28.
    Croasdale, C. R., Schwartz, G. S., Malling, J. V., & Holland, E. J. (1999). Keratolimbal allograft: Recommendations for tissue procurement and preparation by eye banks, and standard surgical technique. Cornea, 18, 52–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Kwitko, S., Marinho, D., Barcaro, S., Bocaccio, F., Rymer, S., Fernandes, S., et al. (1995). Allograft conjunctival transplantation for bilateral ocular surface disorders. Ophthalmology, 102, 1020–1025.CrossRefGoogle Scholar
  30. 30.
    Biber, J. M., Skeens, H. M., Neff, K. D., & Holland, E. J. (2011). The cincinnati procedure: Technique and outcomes of combined living-related conjunctival limbal allografts and keratolimbal allografts in severe ocular surface failure. Cornea, 30, 765–771.CrossRefGoogle Scholar
  31. 31.
    Chan, C. C., Biber, J. M., & Holland, E. J. (2012). The modified Cincinnati procedure: Combined conjunctival limbal autografts and keratolimbal allografts for severe unilateral ocular surface failure. Cornea, 31, 1264–1272.CrossRefGoogle Scholar
  32. 32.
    Espana, E. M., Di Pascuale, M., Grueterich, M., Solomon, A., & Tseng, S. C. G. (2004). Keratolimbal allograft in corneal reconstruction. Eye, 18, 406–417.PubMedCrossRefGoogle Scholar
  33. 33.
    Basu, S., Sureka, S. P., Shanbhag, S. S., Kethiri, A. R., Singh, V., & Sangwan, V. S. (2016). Simple limbal epithelial transplantation: Long-term clinical outcomes in 125 cases of unilateral chronic ocular surface burns. Ophthalmology, 123, 1000–1010.PubMedCrossRefGoogle Scholar
  34. 34.
    Sangwan, V. S., Basu, S., Macneil, S., & Balasubramanian, D. (2012). Simple limbal epithelial transplantation (SLET): A novel surgical technique for the treatment of unilateral limbal stem cell deficiency. The British Journal of Ophthalmology, 96, 931–934.CrossRefGoogle Scholar
  35. 35.
    Vazirani, J., Ali, M. H., Sharma, N., Gupta, N., Mittal, V., Atallah, M., et al. (2016). Autologous simple limbal epithelial transplantation for unilateral limbal stem cell deficiency: Multicentre results. The British Journal of Ophthalmology, 100, 1416–1420.PubMedCrossRefGoogle Scholar
  36. 36.
    Amescua, G., Atallah, M., Nikpoor, N., Galor, A., & Perez, V. L. (2014). Modified simple limbal epithelial transplantation using cryopreserved amniotic membrane for unilateral limbal stem cell deficiency. American Journal of Ophthalmology, 158, 469–475.PubMedCrossRefGoogle Scholar
  37. 37.
    Rheinwald, J. G., & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell, 6, 331–343.PubMedCrossRefGoogle Scholar
  38. 38.
    Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., & De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. The Lancet, 349, 990–993.CrossRefGoogle Scholar
  39. 39.
    Sangwan, V. S., Basu, S., Vemuganti, G. K., Sejpal, K., Subramaniam, S. V., Bandyopadhyay, S., et al. (2011). Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: A 10-year study. The British Journal of Ophthalmology, 95, 1525–1530.PubMedCrossRefGoogle Scholar
  40. 40.
    Deshpande, P., Ramachandran, C., Sangwan, V. S., & Macneil, S. (2013). Cultivation of limbal epithelial cells on electrospun poly (lactide-co-glycolide) scaffolds for delivery to the cornea. In B. Wright & C. J. Connon (Eds.), Corneal regenerative medicine: Methods and protocols. Totowa, NJ: Humana Press.Google Scholar
  41. 41.
    Fasolo, A., Pedrotti, E., Passilongo, M., Marchini, G., Monterosso, C., Zampini, R., et al. (2016). Safety outcomes and long-term effectiveness of ex vivo autologous cultured limbal epithelial transplantation for limbal stem cell deficiency. The British Journal of Ophthalmology, 101(5), 640–649.PubMedCrossRefGoogle Scholar
  42. 42.
    Rama, P., Bonini, S., Lambiase, A., Golisano, O., Paterna, P., De Luca, M., et al. (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation, 72, 1478–1485.PubMedCrossRefGoogle Scholar
  43. 43.
    Sangwan, V. S., Matalia, H. P., Vemuganti, G. K., Fatima, A., Ifthekar, G., Singh, S., et al. (2006). Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian Journal of Ophthalmology, 54, 29–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsai, R. J.-F., Li, L.-M., & Chen, J.-K. (2000). Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. The New England Journal of Medicine, 343, 86–93.CrossRefGoogle Scholar
  45. 45.
    Eslani, M., Baradaran-Rafii, A., & Ahmad, S. (2012). Cultivated limbal and oral mucosal epithelial transplantation. Seminars in Ophthalmology, 27, 80–93.PubMedCrossRefGoogle Scholar
  46. 46.
    Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., et al. (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. The New England Journal of Medicine, 351, 1187–1196.PubMedCrossRefGoogle Scholar
  47. 47.
    Nakamura, T., Inatomi, T., Sotozono, C., Amemiya, T., Kanamura, N., & Kinoshita, S. (2004). Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. The British Journal of Ophthalmology, 88, 1280–1284.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Inatomi, T., Nakamura, T., Koizumi, N., Sotozono, C., Yokoi, N., & Kinoshita, S. (2006). Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. American Journal of Ophthalmology, 141, 267–275.PubMedCrossRefGoogle Scholar
  49. 49.
    Prabhasawat, P., Ekpo, P., Uiprasertkul, M., Chotikavanich, S., Tesavibul, N., Pornpanich, K., et al. (2016). Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease. Cell and Tissue Banking, 17, 491–503.PubMedCrossRefGoogle Scholar
  50. 50.
    Satake, Y., Higa, K., Tsubota, K., & Shimazaki, J. (2011). Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology, 118, 1524–1530.PubMedCrossRefGoogle Scholar
  51. 51.
    Dobrowolski, D., Wylegala, E., Wowra, B., & Orzechowska-Wylegala, B. (2011). Cultivated oral mucosa epithelium transplantation (COMET) in bilateral limbal stem cell deficiency. Acta Ophthalmologica. Supplement, 89.  https://doi.org/10.1111/j.1755-3768.2011.4374.x CrossRefGoogle Scholar
  52. 52.
    Sotozono, C., Inatomi, T., Nakamura, T., Koizumi, N., Yokoi, N., Ueta, M., et al. (2013). Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology, 120, 193–200.PubMedCrossRefGoogle Scholar
  53. 53.
    Liu, J., Sheha, H., Fu, Y., Giegengack, M., & Tseng, S. C. (2011). Oral mucosal graft with amniotic membrane transplantation for total limbal stem cell deficiency. American Journal of Ophthalmology, 152, 739–47.e1.PubMedCrossRefGoogle Scholar
  54. 54.
    Katikireddy, K. R., Dana, R., & Jurkunas, U. V. (2014). Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells. Stem Cells, 32, 717–729.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang, L., Coulson-Thomas, V. J., Ferreira, T. G., & Kao, W. W. Y. (2015). Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmology, 15, 155.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Meyer-Blazejewska, E. A., Call, M. K., Yamanaka, O., Liu, H., Schlötzer-Schrehardt, U., Kruse, F. E., et al. (2011). From hair to cornea: Towards the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells, 29, 57–66.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Monteiro, B. G., Serafim, R. C., Melo, G. B., Silva, M. C. P., Lizier, N. F., Maranduba, C. M. C., et al. (2009). Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Proliferation, 42, 587–594.PubMedCrossRefGoogle Scholar
  58. 58.
    Erbani, J., Aberdam, D., Larghero, J., & Vanneaux, V. (2016). Pluripotent stem cells and other innovative strategies for the treatment of ocular surface diseases. Stem Cell Reviews, 12, 171–178.PubMedCrossRefGoogle Scholar
  59. 59.
    Hayashi, R., Ishikawa, Y., Ito, M., Kageyama, T., Takashiba, K., Fujioka, T., et al. (2012). Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One, 7, e45435.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kelaini, S., Cochrane, A., & Margariti, A. (2014). Direct reprogramming of adult cells: Avoiding the pluripotent state. Stem Cells Cloning, 7, 19–29.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Casaroli-Marano, R. P., Nieto-Nicolau, N., Martínez-Conesa, E. M., Edel, M., & Alvarez-Palomo, A. B. (2015). Potential role of induced pluripotent stem cells (IPSCs) for cell-based therapy of the ocular surface. Journal of Clinical Medicine, 4, 318–342.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Delmonte, D. W., & Kim, T. (2011). Anatomy and physiology of the cornea. Journal of Cataract and Refractive Surgery, 37, 588–598.PubMedCrossRefGoogle Scholar
  63. 63.
    Beales, M. P., Funderburgh, J. L., Jester, J. V., & Hassell, J. R. (1999). Proteoglycan synthesis by bovine keratocytes and corneal fibroblasts: Maintenance of the keratocyte phenotype in culture. Investigative Ophthalmology & Visual Science, 40, 1658–1663.Google Scholar
  64. 64.
    Funderburgh, J. L., Mann, M. M., & Funderburgh, M. L. (2003). Keratocyte phenotype mediates proteoglycan structure: A role for fibroblasts in corneal fibrosis. The Journal of Biological Chemistry, 278, 45629–45637.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Karamichos, D., Funderburgh, M. L., Hutcheon, A. E. K., Zieske, J. D., Du, Y., Wu, J., et al. (2014). A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells. PLoS One, 9, e86260.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Du, Y., Funderburgh, M. L., Mann, M. M., Sundarraj, N., & Funderburgh, J. L. (2005). Multipotent stem cells in human corneal stroma. Stem Cells, 23, 1266–1275.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Du, Y., Sundarraj, N., Funderburgh, M. L., Harvey, S. A., Birk, D. E., & Funderburgh, J. L. (2007). Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Investigative Ophthalmology & Visual Science, 48, 5038–5045.CrossRefGoogle Scholar
  68. 68.
    Basu, S., Hertsenberg, A. J., Funderburgh, M. L., Burrow, M. K., Mann, M. M., Du, Y., et al. (2014). Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Science Translational Medicine, 6, 266RA172–266RA172.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Joyce, N. C. (2003). Proliferative capacity of the corneal endothelium. Progress in Retinal and Eye Research, 22, 359–389.PubMedCrossRefGoogle Scholar
  70. 70.
    Dapena, I., Ham, L., & Melles, G. R. J. (2009). Endothelial keratoplasty: DSEK/DSAEK or DMEK – The thinner the better? Current Opinion in Ophthalmology, 20, 299–307.PubMedCrossRefGoogle Scholar
  71. 71.
    Proulx, S., Bensaoula, T., Nada, O., Audet, C., D’Arc Uwamaliya, J., Devaux, A., et al. (2009). Transplantation of a tissue-engineered corneal endothelium reconstructed on a devitalized carrier in the feline model. Investigative Ophthalmology & Visual Science, 50, 2686–2694.CrossRefGoogle Scholar
  72. 72.
    De Araujo, A. L., & Gomes, J. Á. P. (2015). Corneal stem cells and tissue engineering: Current advances and future perspectives. World Journal of Stem Cells, 7, 806–814.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Proulx, S., & Brunette, I. (2012). Methods being developed for preparation, delivery and transplantation of a tissue-engineered corneal endothelium. Experimental Eye Research, 95, 68–75.PubMedCrossRefGoogle Scholar
  74. 74.
    Kinoshita, S., Koizumi, N., Ueno, M., Okumura, N., Imai, K., Tanaka, H., Yamamoto, Y., Nakamura, T., Inatomi, T., Bush, J., Toda, M., Hagiya, M., Yokota, I., Teramukai, S., Sotozono, C., & Hamuro, J. (2018). Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. New England Journal of Medicine, 378, 995-1003.PubMedCrossRefGoogle Scholar
  75. 75.
    Bostan, C., Theriault, M., Forget, K. J., Doyon, C., Cameron, J. D., Proulx, S., et al. (2016). In vivo functionality of a corneal endothelium transplanted by cell-injection therapy in a Feline model. Investigative Ophthalmology & Visual Science, 57, 1620–1634.CrossRefGoogle Scholar
  76. 76.
    Koizumi, N., Okumura, N., Ueno, M., & Kinoshita, S. (2014). New therapeutic modality for corneal endothelial disease using rho-associated kinase inhibitor eye drops. Cornea, 33(Suppl 11), S25–S31.PubMedCrossRefGoogle Scholar
  77. 77.
    Okumura, N., Okazaki, Y., Inoue, R., Kakutani, K., Nakano, S., Kinoshita, S., et al. (2016). Effect of the rho-associated kinase inhibitor eye drop (Ripasudil) on corneal endothelial wound healing. Investigative Ophthalmology & Visual Science, 57, 1284–1292.CrossRefGoogle Scholar
  78. 78.
    Mccabe, K. L., Kunzevitzky, N. J., Chiswell, B. P., Xia, X., Goldberg, J. L., & Lanza, R. (2015). Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One, 10, e0145266.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Song, Q., Yuan, S., An, Q., Chen, Y., Mao, F. F., Liu, Y., et al. (2016). Directed differentiation of human embryonic stem cells to corneal endothelial cell-like cells: A transcriptomic analysis. Experimental Eye Research, 151, 107–114.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhang, K., Pang, K., & Wu, X. (2014). Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells and Development, 23, 1340–1354.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gomaa, A., Comyn, O., & Liu, C. (2010). Keratoprostheses in clinical practice – A review. Clinical & Experimental Ophthalmology, 38, 211–224.CrossRefGoogle Scholar
  82. 82.
    Dohlman, C. H., Cruzat, A., & White, M. (2014). The Boston keratoprosthesis 2014: A step in the evolution of artificial corneas. Spektrum Augenheilkd, 28, 226–233.CrossRefGoogle Scholar
  83. 83.
    Liu, C., Paul, B., Tandon, R., Lee, E., Fong, K., Mavrikakis, I., et al. (2005). The osteo-odonto-keratoprosthesis (OOKP). Seminars in Ophthalmology, 20, 113–128.PubMedCrossRefGoogle Scholar
  84. 84.
    Iakymenko, S. (2013). Forty-five years of keratoprosthesis study and application at the Filatov Institute: A retrospective analysis of 1 060 cases. International Journal of Ophthalmology, 6, 375–380.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Colby, K. A., & Koo, E. B. (2011). Expanding indications for the Boston keratoprosthesis. Current Opinion in Ophthalmology, 22, 267–273.PubMedCrossRefGoogle Scholar
  86. 86.
    Hicks, C. R., Crawford, G. J., Dart, J. K. G., Grabner, G., Holland, E. J., Stulting, R. D., et al. (2006). AlphaCor: Clinical outcomes. Cornea, 25, 1034–1042.PubMedCrossRefGoogle Scholar
  87. 87.
    Hassanaly, S. I., Talajic, J. C., & Harissi-Dagher, M. (2014). Outcomes following Boston type 1 keratoprosthesis implantation in aniridia patients at the University of Montreal. American Journal of Ophthalmology, 158, 270–276.e1.PubMedCrossRefGoogle Scholar
  88. 88.
    Ma, J. J., Graney, J. M., & Dohlman, C. H. (2005). Repeat penetrating keratoplasty versus the Boston keratoprosthesis in graft failure. International Ophthalmology Clinics, 45, 49–59.PubMedCrossRefGoogle Scholar
  89. 89.
    Lee, W. B., Shtein, R. M., Kaufman, S. C., Deng, S. X., & Rosenblatt, M. I. (2015). Boston keratoprosthesis: Outcomes and complications. Ophthalmology, 122, 1504–1511.PubMedCrossRefGoogle Scholar
  90. 90.
    Rudnisky, C. J., Belin, M. W., Guo, R., Ciolino, J. B., Dohlman, C. H., Aquavella, J., et al. (2016). Visual acuity outcomes of the Boston keratoprosthesis type 1: Multicenter study results. American Journal of Ophthalmology, 162, 89–98.PubMedCrossRefGoogle Scholar
  91. 91.
    Aucoin, L., Griffith, C. M., Pleizier, G., Deslandes, Y., & Sheardown, H. (2002). Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations. Journal of Biomaterials Science, Polymer Edition, 13, 447–462.CrossRefGoogle Scholar
  92. 92.
    Bruining, M. J., Paul Pijpers, A., Kingshott, P., & Koole, L. H. (2002). Studies on new polymeric biomaterials with tunable hydrophilicity, and their possible utility in corneal repair surgery. Biomaterials, 23, 1213–1219.PubMedCrossRefGoogle Scholar
  93. 93.
    George, A., & Pitt, W. G. (2002). Comparison of corneal epithelial cellular growth on synthetic cornea materials. Biomaterials, 23, 1369–1373.PubMedCrossRefGoogle Scholar
  94. 94.
    Legeais, J.-M., & Renard, G. (1998). A second generation of artificial cornea (Biokpro II). Biomaterials, 19, 1517–1522.PubMedCrossRefGoogle Scholar
  95. 95.
    Merrett, K., Griffith, C. M., Deslandes, Y., Pleizier, G., & Sheardown, H. (2001). Adhesion of corneal epithelial cells to cell adhesion peptide modified pHEMA surfaces. Journal of Biomaterials Science, Polymer Edition, 12, 647–671.CrossRefGoogle Scholar
  96. 96.
    Noh, H. (2013). Enhanced cornea cell growth on a keratoprosthesis material immobilized with fibronectin or EGF. Macromolecular Research, 21, 169–175.CrossRefGoogle Scholar
  97. 97.
    Jacob, J. T., Rochefort, J. R., Bi, J., & Gebhardt, B. M. (2005). Corneal epithelial cell growth over tethered-protein/peptide surface-modified hydrogels. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B, 198–205.CrossRefGoogle Scholar
  98. 98.
    Wallace, C., Jacob, J. T., Stoltz, A., Bi, J., & Bundy, K. (2005). Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces. Journal of Biomedical Materials Research. Part A, 72A, 19–24.CrossRefGoogle Scholar
  99. 99.
    Johnson, G., Jenkins, M., Mclean, K. M., Griesser, H. J., Kwak, J., Goodman, M., et al. (2000). Peptoid-containing collagen mimetics with cell binding activity. Journal of Biomedical Materials Research, 51, 612–624.PubMedCrossRefGoogle Scholar
  100. 100.
    Myung, D., Koh, W., Bakri, A., Zhang, F., Marshall, A., Ko, J., et al. (2007). Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Biomedical Microdevices, 9, 911–922.PubMedCrossRefGoogle Scholar
  101. 101.
    Myung, D., Farooqui, N., Zheng, L. L., Koh, W., Noolandi, J., Cochran, J. R., et al. (2009). Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. Journal of Biomedical Materials Research. Part A, 90, 70–81.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Myung, D., Duhamel, P.-E., Cochran, J., Noolandi, J., Ta, C., & Frank, C. (2008). Development of hydrogel-based keratoprostheses: A materials perspective. Biotechnology Progress, 24, 735–741.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wilson, S. L., Sidney, L. E., Dunphy, S. E., Rose, J. B., & Hopkinson, A. (2013). Keeping an eye on decellularized corneas: A review of methods, characterization and applications. Journal of Functional Biomaterials, 4, 114–161.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Daoud, Y. J., Smith, R., Smith, T., Akpek, E. K., Ward, D. E., & Stark, W. J. (2011). The intraoperative impression and postoperative outcomes of gamma-irradiated corneas in corneal and glaucoma patch surgery. Cornea, 30, 1387–1391.PubMedCrossRefGoogle Scholar
  105. 105.
    Zhang, M. C., Liu, X., Jin, Y., Jiang, D. L., Wei, X. S., & Xie, H. T. (2015). Lamellar keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma. American Journal of Transplantation, 15, 1068–1075.PubMedCrossRefGoogle Scholar
  106. 106.
    Chen, S.-C., Telinius, N., Lin, H.-T., Huang, M.-C., Lin, C.-C., Chou, C.-H., et al. (2015). Use of Fish Scale-Derived BioCornea to seal full-thickness corneal perforations in Pig Models. PLoS One, 10, e0143511.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nagai, T., Izumi, M., & Ishii, M. (2004). Fish scale collagen. Preparation and partial characterization. International Journal of Food Science & Technology, 39, 239–244.CrossRefGoogle Scholar
  108. 108.
    Van Essen, T. H., Lin, C. C., Hussain, A. K., Maas, S., Lai, H. J., Linnartz, H., et al. (2013). A Fish Scale–Derived Collagen Matrix as artificial cornea in rats: Properties and potential fish-derived collagen matrix as artificial cornea. Investigative Ophthalmology & Visual Science, 54, 3224–3233.CrossRefGoogle Scholar
  109. 109.
    Senthil, S., Rao, H. L., Babu, J. G., Mandal, A. K., & Garudadri, C. S. (2013). Comparison of outcomes of trabeculectomy with mitomycin C vs. ologen implant in primary glaucoma. Indian Journal of Ophthalmology, 61, 338–342.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Guo, X., Hutcheon, A. E. K., Melotti, S. A., Zieske, J. D., Trinkaus-Randall, V., & Ruberti, J. W. (2007). Morphological characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts. Investigative Ophthalmology & Visual Science, 48, 4050–4060.CrossRefGoogle Scholar
  111. 111.
    Proulx, S., Uwamaliya, J. D. A., Carrier, P., Deschambeault, A., Audet, C., Giasson, C. J., et al. (2010). Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Molecular Vision, 16, 2192–2201.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Karamichos, D., Rich, C. B., Hutcheon, A. E. K., Ren, R., Saitta, B., Trinkaus-Randall, V., et al. (2011). Self-assembled matrix by umbilical cord stem cells. Journal of Functional Biomaterials, 2, 213–229.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zhou, H.-X., Rivas, G., & Minton, A. P. (2008). Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annual Review of Biophysics, 37, 375–397.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kumar, P., Satyam, A., Fan, X., Rochev, Y., Rodriguez, B. J., Gorelov, A., et al. (2014). Accelerated development of supramolecular corneal stromal-like assemblies from corneal fibroblasts in the presence of macromolecular crowders. Tissue Engineering Part C: Methods, 21, 660–670.CrossRefGoogle Scholar
  115. 115.
    Boulze Pankert, M., Goyer, B., Zaguia, F., Bareille, M., Perron, M.-C., Liu, X., et al. (2014). Biocompatibility and functionality of a tissue-engineered living corneal stroma transplanted in the feline eye living corneal stroma transplanted in feline eye. Investigative Ophthalmology & Visual Science, 55, 6908–6920.CrossRefGoogle Scholar
  116. 116.
    Wray, L. S., & Orwin, E. J. (2009). Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Engineering Part A, 15, 1463–1472.PubMedCrossRefGoogle Scholar
  117. 117.
    Hayes, S., Lewis, P., Islam, M. M., Doutch, J., Sorensen, T., White, T., et al. (2015). The structural and optical properties of type III human collagen biosynthetic corneal substitutes. Acta Biomaterialia, 25, 121–130.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Rafat, M., Li, F., Fagerholm, P., Lagali, N. S., Watsky, M. A., Munger, R., et al. (2008). PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials, 29, 3960–3972.PubMedCrossRefGoogle Scholar
  119. 119.
    Cheung, R. C. F., Ng, T. B., Wong, J. H., & Chan, W. Y. (2015). Chitosan: An update on potential biomedical and pharmaceutical applications. Marine Drugs, 13, 5156–5186.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Alaminos, M., Sánchez-Quevedo, M. A. D. C., Muñoz-Ávila, J. I., Serrano, D., Medialdea, S., Carreras, I., et al. (2006). Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Investigative Ophthalmology & Visual Science, 47, 3311–3317.CrossRefGoogle Scholar
  121. 121.
    De La Cruz Cardona, J., Ionescu, A.-M., Gómez-Sotomayor, R., González-Andrades, M., Campos, A., Alaminos, M., et al. (2011). Transparency in a fibrin and fibrin–agarose corneal stroma substitute generated by tissue engineering. Cornea, 30, 1428–1435.CrossRefGoogle Scholar
  122. 122.
    Garzón, I., Martín-Piedra, M. A., Alfonso-Rodríguez, C., González-Andrades, M., Carriel, V., Martínez-Gómez, C., et al. (2014). Generation of a biomimetic human artificial cornea model using Wharton’s jelly mesenchymal stem cells. Investigative Ophthalmology & Visual Science, 55, 4073–4083.CrossRefGoogle Scholar
  123. 123.
    Fagerholm, P., Lagali, N. S., Merrett, K., Jackson, W. B., Munger, R., Liu, Y., et al. (2010). A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-Month follow-up of a phase 1 clinical study. Sci. Transl. Med., 2, 46ra61.PubMedCrossRefGoogle Scholar
  124. 124.
    Fagerholm, P., Lagali, N. S., Ong, J. A., Merrett, K., Jackson, W. B., Polarek, J. W., et al. (2014). Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials, 35, 2420–2427.PubMedCrossRefGoogle Scholar
  125. 125.
    Hackett, J. M., Lagali, N., Merrett, K., Edelhauser, H., Sun, Y., Gan, L., et al. (2011). Biosynthetic corneal implants for replacement of pathologic corneal tissue: Performance in a Controlled Rabbit Alkali Burn Model. Investigative Ophthalmology & Visual Science, 52, 651–657.CrossRefGoogle Scholar
  126. 126.
    Yumoto, H., Hirota, K., Hirao, K., Miyazaki, T., Yamamoto, N., Miyamoto, K., et al. (2015). Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells. Journal of Biomedical Materials Research. Part A, 103, 555–563.PubMedCrossRefGoogle Scholar
  127. 127.
    Mclaughlin, C. R., Acosta, M. C., Luna, C., Liu, W., Belmonte, C., Griffith, M., et al. (2010). Regeneration of functional nerves within full thickness collagen–phosphorylcholine corneal substitute implants in guinea pigs. Biomaterials, 31, 2770–2778.PubMedCrossRefGoogle Scholar
  128. 128.
    Buznyk, O., Pasyechnikova, N., Islam, M. M., Iakymenko, S., Fagerholm, P., & Griffith, M. (2015). Bioengineered corneas grafted as alternatives to human donor corneas in three high-risk patients. Clinical and Translational Science, 8, 558–562.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Mirazul Islam, M., Cepla, V., He, C., Edin, J., Rakickas, T., Kobuch, K., et al. (2015). Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomaterialia, 12, 70–80.PubMedCrossRefGoogle Scholar
  130. 130.
    Villa-Diaz, L. G., Ross, A. M., Lahann, J., & Krebsbach, P. H. (2013). The evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings. Stem Cells, 31, 1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Gouveia, R. M., Jones, R. R., Hamley, I. W., & Connon, C. J. (2014). The bioactivity of composite Fmoc-RGDS-collagen gels. Biomaterials Science, 2, 1222–1229.CrossRefGoogle Scholar
  132. 132.
    Miotto, M., Gouveia, R. M., & Connon, C. J. (2015). Peptide amphiphiles in corneal tissue engineering. Journal of Functional Biomaterials, 6, 687–707.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Gouveia, R. M., Hamley, I. W., & Connon, C. J. (2015). Bio-fabrication and physiological self-release of tissue equivalents using smart peptide amphiphile templates. Journal of Materials Science. Materials in Medicine, 26, 242.PubMedCrossRefGoogle Scholar
  134. 134.
    Uzunalli, G., Soran, Z., Erkal, T. S., Dagdas, Y. S., Dinc, E., Hondur, A. M., et al. (2014). Bioactive self-assembled peptide nanofibers for corneal stroma regeneration. Acta Biomaterialia, 10, 1156–1166.PubMedCrossRefGoogle Scholar
  135. 135.
    O’Leary, L. E. R., Fallas, J. A., Bakota, E. L., Kang, M. K., & Hartgerink, J. D. (2011). Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nature Chemistry, 3, 821–828.PubMedCrossRefGoogle Scholar
  136. 136.
    Islam, M. M., Ravichandran, R., Olsen, D., Ljunggren, M. K., Fagerholm, P., Lee, C. J., et al. (2016). Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation. RSC Advances, 6, 55745–55749.CrossRefGoogle Scholar
  137. 137.
    Bareiss, B., Ghorbani, M., Li, F., Blake, J. A., Scaiano, J. C., Zhang, J., et al. (2010). Controlled release of acyclovir through bioengineered corneal implants with silica nanoparticle carriers. The Open Tissue Engineering and Regenerative Medicine Journal, 3, 10–17.CrossRefGoogle Scholar
  138. 138.
    Riau, A. K., Mondal, D., Aung, T. T., Murugan, E., Chen, L., Lwin, N. C., et al. (2015). Collagen-based artificial corneal scaffold with anti-infective capability for prevention of perioperative bacterial infections. ACS Biomaterials Science & Engineering, 1, 1324–1334.CrossRefGoogle Scholar
  139. 139.
    Alarcon, E. I., Vulesevic, B., Argawal, A., Ross, A., Bejjani, P., Podrebarac, J., et al. (2016). Coloured cornea replacements with anti-infective properties: Expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale, 8, 6484–6489.PubMedCrossRefGoogle Scholar
  140. 140.
    Islam, M. M., Buznyk, O., Reddy, J. C., Pasyechnikova, N., Alarcon, E. I., Hayes, S., Lewis, P., Fagerholm, P., He, C., Iakymenko, S., Liu, W., Meek, K. M., Sangwan, V. S., & Griffith, M. (2018) Biomaterials-enabled cornea regeneration in patients at high risk for rejection of donor tissue transplantation. npj Regenerative Medicine, 3, 2.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Christopher D. McTiernan
    • 1
    • 2
  • Isabelle Brunette
    • 1
    • 2
  • May Griffith
    • 1
    • 2
  1. 1.Maisonneuve-Rosemont Hospital Research CentreMontrealCanada
  2. 2.Department of OphthalmologyUniversity of MontrealMontrealCanada

Personalised recommendations