Advertisement

Stem Cells for Nerve and Muscle Repair: Harnessing Developmental Dynamics in Therapeutics

  • Satish Sasikumar
  • Ashima Bhan
  • T. K. Rajendra
Chapter
Part of the Stem Cells in Clinical Applications book series (SCCA)

Abstract

Complexity, developmental diversification, structure-function plasticity and their importance in maintenance and perpetuation of biological fitness highlight the seminal role played by the nervous system and its accessory organs in the evolution of life and societal complexity. Equally complex are the diseases and disorders of the nervous system affecting sensory, motor, and intellectual faculties of humans. While therapeutic options for neuronal disorders have to deal with the BBB, “one-size-fits-all” paradigm does not work in therapeutics given the complex biochemical diversity of various neuronal cell types and their developmental origin. In contrast to classical therapeutics that have not evolved a cure for any major disorder, stem cell technology has generated both hype and hope. While replenishing lost neurons responsible for memory disorders would not bring back old memory, no technology is available to replace a lost motoneuron either by enticing the stem cell-derived neuron to extend its axon in the direction towards its target or directly transplanting a giant neuron from the spinal cord to the target. In spite of these limitations, there are great strides made in stem cell therapeutics for the diseases and disorders of neurons and muscle, be it the delivery mode bypassing the BBB, direct stem cell transplantation for replacement therapy or stem cell-mediated specific cargo delivery to affected neuronal or muscle cell types. Future of stem cell therapeutics for the diseases and disorders of the nerve and the muscle depends heavily on our understanding of developmental biology at the molecular level and the role played by model organisms in elucidating disease mechanisms.

Keywords

Development Differentiation Drug screen Diseases of nerve and muscle Extracellular vesicles Mitochondria Neuro-musculature Plasticity Stem cell therapy Trans-differentiation 

Abbreviations

ALS

Amyotrophic lateral sclerosis

BBB

Blood brain barrier

CD

Cluster of differentiation

CNS

Central nervous system

CRISPR

Clustered regularly interspaced short palindromic repeats

DMD

Duchenne muscular dystrophy

DNA

Deoxyribonucleic acid

ENS

Enteric nervous system

ES cells

Embryonic stem cells

EVs

Extracellular vesicles

HRT

Hormone replacement therapies

IA

Intra-arterial

iPSCs

Induced pluripotent stem cell(s)

IV

Intra-venous

LSDs

Lysosomal storage disorders

MABs

Mesoangioblasts

MCAO

Middle cerebral artery occlusion

MDSCs

Muscle-derived stem cells

MEFs

Mouse embryonic fibroblasts

miRNAs

microRNAs

MPCs

Muscle progenitor cells

MSCs

Mesenchymal stem cells

Myf5

Myogenic factor 5

MyoD

Myoblast determination protein

NMDs

Neuromuscular diseases/disorders

NPCs

Neural progenitor cells

NSCs

Neural stem cells

NSPCs

Neural stem/progenitor cells

PICs

PW1+ interstitial cells

RICE

Rest, ice/cold, compression and elevation

RNA

Ribonucleic acid

RNAi

RNA interference

SMA

Spinal muscular atrophy

Sox

Sry-related High Mobility Group (HMG) box

SP

Side population

Sry

Sex determining region Y (present on the Y chromosome)

SVZ

Subventricular zone

3D

Three-dimensional

Notes

Acknowledgements

Authors duly acknowledge the help and encouragement from Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India.

References

  1. Adams GB, Martin RP, Alley IR et al (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25:238–243PubMedGoogle Scholar
  2. Al Bekairy AM, Al Harbi S, Alkatheri AM et al (2014) Bacterial Meningitis: an update review. Afr J Pharm Pharmacol 8:469–478Google Scholar
  3. Alcendor DJ, Block FE III, Cliffel DE et al (2013) Neurovascular unit on a chip: implications for translational applications. Stem Cell Res Ther 4(Suppl 1):S18.  https://doi.org/10.1186/scrt379CrossRefPubMedPubMedCentralGoogle Scholar
  4. Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9:617–628PubMedGoogle Scholar
  5. Alexiades NG, Mckhann GM II (2017) Getting more skin in the game: using human neural stem cells transdifferentiated from fibroblasts to target malignant gliomas. Neurosurgery 81:N36–N37PubMedGoogle Scholar
  6. Amiel J, Lyonnet S (2001) Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet 38:729–739PubMedPubMedCentralGoogle Scholar
  7. Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7:603–615PubMedGoogle Scholar
  8. Anderson DJ (1993) Molecular control of cell fate in the neural crest: the sympathoadrenal lineage. Annu Rev Neurosci 16:129–158PubMedGoogle Scholar
  9. Anderson DJ (1997) Cellular and molecular biology of neural crest cell lineage determination. Trends Genet 13:276–280PubMedGoogle Scholar
  10. Anderson AJ, Haus DL, Hooshmand MJ et al (2011) Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 6:367–406PubMedPubMedCentralGoogle Scholar
  11. Appel B, Korzh V, Glasgow E et al (1995) Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish. Development 121:4117–4125PubMedGoogle Scholar
  12. Arnold HH, Braun T (2000) Genetics of muscle determination and development. Curr Top Dev Biol 48:129–164PubMedGoogle Scholar
  13. Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218:237–245PubMedGoogle Scholar
  14. Asa SL, Ezzat S (2002) The pathogenesis of pituitary tumours. Nat Rev Cancer 2:836–849PubMedGoogle Scholar
  15. Babin PJ, Goizet C, Raldua D (2014) Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 118:36–58PubMedGoogle Scholar
  16. Bago JR, Okolie O, Dumitru R et al (2017) Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci Transl Med 9(375):pii: eaah6510.  https://doi.org/10.1126/scitranslmed.aah6510CrossRefGoogle Scholar
  17. Baj A, Colombo M, Headley JL et al (2015) Post-poliomyelitis syndrome as a possible viral disease. Int J Infect Dis 35:107–116PubMedGoogle Scholar
  18. Bakshi A, Keck CA, Koshkin VS et al (2005) Caspase-mediated cell death predominates following engraftment of neural progenitor cells into traumatically injured rat brain. Brain Res 1065:8–19PubMedGoogle Scholar
  19. Balyasnikova IV, Prasol MS, Ferguson SD et al (2014) Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors. Mol Ther 22:140–148PubMedGoogle Scholar
  20. Bargiela D, Shanmugarajah P, Lo C et al (2015) Mitochondrial pathology in progressive cerebellar ataxia. Cerebellum Ataxias 2:16PubMedPubMedCentralGoogle Scholar
  21. Barker RA, Cicchetti F, Neal MJ (2012) Neuroanatomy and neuroscience at a glance. Wiley-Blackwell, New JerseyGoogle Scholar
  22. Bartholow R (1982) Medical electricity: a practical treatise on the applications of electricity to medicine and surgery. Henry C. Lea’s Son & Co., PhiladelphiaGoogle Scholar
  23. Bartt R (2012) Acute bacterial and viral meningitis. Continuum Lifelong Learning Neurol 18:1255–1270Google Scholar
  24. Baser A, Skabkin M, Martin-Villalba A (2017) Neural stem cell activation and the role of protein synthesis. Brain Plast 3:27–41PubMedPubMedCentralGoogle Scholar
  25. Bassuk AG, Zheng A, Li Y et al (2016) Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep 6:19969.  https://doi.org/10.1038/srep19969CrossRefPubMedPubMedCentralGoogle Scholar
  26. Behin A, Hoang-Xuan K, Carpentier AF et al (2003) Primary brain tumours in adults. Lancet 361:323–331PubMedGoogle Scholar
  27. Belgacem YH, Hamilton AM, Shim S et al (2016) The many hats of Sonic Hedgehog signaling in nervous system development and disease. J Dev Biol 4:35.  https://doi.org/10.3390/jdb4040035CrossRefPubMedCentralGoogle Scholar
  28. Ben-Hur T, Einstein O, Mizrachi-Kol R et al (2003) Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41:73–80PubMedGoogle Scholar
  29. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4.  https://doi.org/10.1101/cshperspect.a008342
  30. Bergsland M, Ramskold D, Zaouter C et al (2011) Sequentially acting Sox transcription factors in neural lineage development. Genes Dev 25:2453–2464PubMedPubMedCentralGoogle Scholar
  31. Bernstein JJ, Mary EB (1971) Axonal regeneration and formation of synapses proximal to the site of lesion following hemisection of the rat spinal cord. Exp Neurol 30:336–351PubMedGoogle Scholar
  32. Bertini E, D’Amico A, Gualandi F et al (2011) Congenital muscular dystrophies: a brief review. Semin Pediatr Neurol 18:277–288PubMedPubMedCentralGoogle Scholar
  33. Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530PubMedGoogle Scholar
  34. Birchmeier C, Brohman H (2000) Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol 12:725–730PubMedGoogle Scholar
  35. Bixby S, Kruger GM, Mosher JT et al (2002) Cellintrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35:643–656PubMedGoogle Scholar
  36. Blair E, Watson L (2006) Epidemiology of cerebral palsy. Semin Fetal Neonatal Med 11:117–125PubMedGoogle Scholar
  37. Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function. Cell 105:829–841PubMedGoogle Scholar
  38. Blau HM, Cosgrove BD, Ho AT (2015) The central role of muscle stem cells in regenerative failure with aging. Nat Med 21:854–862PubMedPubMedCentralGoogle Scholar
  39. Blocklet D, Toungouz M, Berkenboom G et al (2006) Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells 24:333–336PubMedGoogle Scholar
  40. Bossolasco P, Cova L, Levandis G et al (2012) Noninvasive near-infrared live imaging of human adult mesenchymal stem cells transplanted in a rodent model of Parkinson’s disease. Int J Nanomed 7:435–447Google Scholar
  41. Bottai D, Madaschi L, Di Giulio AM et al (2008) Viability-dependent promoting action of adult neural precursors in spinal cord injury. Mol Med 14:634–644PubMedPubMedCentralGoogle Scholar
  42. Boyette LB, Tuan RS (2014) Adult stem cells and diseases of aging. J Clin Med 3:88–134PubMedPubMedCentralGoogle Scholar
  43. Brack AS, Munoz-Canoves P (2016) The ins and outs of muscle stem cell aging. Skelet Muscle 6:1PubMedPubMedCentralGoogle Scholar
  44. Breunig JJ, Levy R, Antonuk CD et al (2015) Ets factors regulate neural stem cell depletion and gliogenesis in Ras pathway glioma. Cell Rep 12:258–271PubMedGoogle Scholar
  45. Brzustowicz LM, Lehner T, Castilla LH et al (1990) Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature 344:540–541PubMedGoogle Scholar
  46. Buckingham M (2001) Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 11:440–448PubMedGoogle Scholar
  47. Budnik V (1996) Synapse maturation and structural plasticity at Drosophila neuromuscular junctions. Curr Opin Neurobiol 6:858–867PubMedGoogle Scholar
  48. Burkin DJ, Kaufman SJ (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296:183–190PubMedGoogle Scholar
  49. Byrne GJ (2005) Pharmacological treatment of behavioural problems in dementia. Aust Prescr 28:67–70Google Scholar
  50. Carpio A, Romo ML, Parkhouse RM et al (2016) Parasitic diseases of the central nervous system: lessons for clinicians and policy makers. Expert Rev Neurother 16:401–414PubMedPubMedCentralGoogle Scholar
  51. Chakkalakal JV, Jones KM, Basson MA et al (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490:355–360PubMedPubMedCentralGoogle Scholar
  52. Chal J, Oginuma M, Al Tanoury Z et al (2015) Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 33:962–969PubMedGoogle Scholar
  53. Chan AW, Dominko T, Luetjens CM et al (2000) Clonal propagation of primate offspring by embryo splitting. Science 287:317–319PubMedGoogle Scholar
  54. Chang Q, Balice-Gordon RJ (2000) Highwire, rpm-1, and futsch: balancing synaptic growth and stability. Neuron 26:287–290PubMedGoogle Scholar
  55. Chau CL, Griffith JF (2005) Musculoskeletal infections: ultrasound appearances. Clin Radiol 60:149–159PubMedGoogle Scholar
  56. Chen JN, Fishman MC (2000) Genetics of heart development. Trends Genet 16:383–388PubMedGoogle Scholar
  57. Chen J, Li Y, Yu TS et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526PubMedPubMedCentralGoogle Scholar
  58. Chien KR (2004) Stem cells: lost in translation. Nature 428:607–608PubMedGoogle Scholar
  59. Chu K, Kim M, Jeong SW et al (2003) Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett 343:129–133PubMedGoogle Scholar
  60. Chu-LaGraff Q, Schmid A, Leidel J et al (1995) huckebein specifies aspects of CNS precursor identity required for motorneuron axon pathfinding. Neuron 15:1041–1051PubMedGoogle Scholar
  61. Cockburn N, Pradhan A, Taing MW et al (2017) Oral health impacts of medications used to treat mental illness. J Affect Disord 223:184–193PubMedGoogle Scholar
  62. Collins CA, Olsen I, Zammit PS et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301Google Scholar
  63. Cooke MJ, Wang Y, Morshead CM et al (2011) Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials 32:5688–5697PubMedGoogle Scholar
  64. Coppede F, Mancuso M, Siciliano G et al (2006) Genes and the environment in neurodegeneration. Biosci Rep 26:341–367PubMedGoogle Scholar
  65. Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283PubMedGoogle Scholar
  66. Corti S, Strazzer S, Del Bo R et al (2002) A subpopulation of murine bone marrow cells fully differentiates along the myogenic pathway and participates in muscle repair in the mdx dystrophic mouse. Exp Cell Res 277:74–85PubMedGoogle Scholar
  67. Corti S, Nizzardo M, Nardini M et al (2008) Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 118:3316–3330PubMedPubMedCentralGoogle Scholar
  68. Corti S, Nizzardo M, Nardini M et al (2010) Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. Brain 133:465–481PubMedGoogle Scholar
  69. Crum-Cianflone NF (2008) Bacterial, fungal, parasitic, and viral myositis. Clin Microbiol Rev 21:473–494PubMedPubMedCentralGoogle Scholar
  70. Dahlke MH, Lauth OS, Jager MD et al (2002) In vivo depletion of hematopoietic stem cells in the rat by an anti-CD45 (RT7) antibody. Blood 99:3566–3572PubMedGoogle Scholar
  71. Dahmann C, Oates AC, Brand M (2011) Boundary formation and maintenance in tissue development. Nat Rev Genet 12:43–55PubMedGoogle Scholar
  72. Daniels SK (2006) Neurological disorders affecting oral, pharyngeal swallowing. GI Motility Online.  https://doi.org/10.1038/gimo34
  73. Danielyan L, Schäfer R, von Ameln-Mayerhofer A et al (2009) Intranasal delivery of cells to the brain. Eur J Cell Biol 88:315–324PubMedGoogle Scholar
  74. Danielyan L, Schäfer R, von Ameln-Mayerhofer A et al (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14:3–16PubMedGoogle Scholar
  75. Dasen JS, Jessell TM (2009) Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 88:169–200PubMedGoogle Scholar
  76. Day SJ, Lawrence PA (2000) Measuring dimensions: the regulation of size and shape. Development 127:2977–2987PubMedGoogle Scholar
  77. de Bakker E, Van Ryssen B, De Schauwer C et al (2013) Canine mesenchymal stem cells: state of the art, perspectives as therapy for dogs and as a model for man. Vet Q 33:225–233PubMedGoogle Scholar
  78. De Bari C, Dell’Accio F, Vandenabeele F et al (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160:909–918PubMedPubMedCentralGoogle Scholar
  79. De Los Angeles A, Ferrari F, Xi R et al (2015) Hallmarks of pluripotency. Nature 525:469–478PubMedGoogle Scholar
  80. Delbeuck X, Van der Linden M, Collette F (2003) Alzheimer’s disease as a disconnection syndrome? Neuropsychol Rev 13:79–92PubMedGoogle Scholar
  81. Dellavalle A, Maroli G, Covarello D et al (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499.  https://doi.org/10.1038/ncomms1508CrossRefGoogle Scholar
  82. Deutsch G, Jung J, Zheng M et al (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871–881PubMedGoogle Scholar
  83. Di Bonito M, Glover JC, Studer M (2013) Hox genes and region-specific sensorimotor circuit formation in the hindbrain and spinal cord. Dev Dyn 242:1348–1368PubMedGoogle Scholar
  84. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677PubMedPubMedCentralGoogle Scholar
  85. Doherty JT, Lenhart KC, Cameron MV et al (2011) Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1. J Biol Chem 286:25903–25921PubMedPubMedCentralGoogle Scholar
  86. Dun XP, Parkinson DB (2017) Role of Netrin-1 signaling in nerve regeneration. Int J Mol Sci 18:491.  https://doi.org/10.3390/ijms18030491CrossRefPubMedCentralGoogle Scholar
  87. Duncan T, Valenzuela M (2017) Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther 8:111PubMedPubMedCentralGoogle Scholar
  88. Dyck PJ, Kratz KM, Karnes JL et al (1993) The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 43:817–824PubMedGoogle Scholar
  89. Eade KT, Fancher HA, Ridyard MS (2012) Developmental transcriptional networks are required to maintain neuronal subtype identity in the mature nervous system. PLoS Genet 8:e1002501PubMedPubMedCentralGoogle Scholar
  90. Ebert AD, Svendsen CN (2010) Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov 9:367–372PubMedGoogle Scholar
  91. Edens BM, Ajroud-Driss S, Ma L et al (2015) Molecular mechanisms and animal models of spinal muscular atrophy. Biochim Biophys Acta 1852:685–692PubMedGoogle Scholar
  92. Egawa N, Kitaoka S, Tsukita K et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104.  https://doi.org/10.1126/scitranslmed.3004052CrossRefPubMedGoogle Scholar
  93. Engel AG, Shen XM, Selcen D et al (2015) Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14:420–434PubMedPubMedCentralGoogle Scholar
  94. Engesser-Cesar C, Anderson AJ, Basso DM et al (2005) Voluntary wheel running improves recovery from a moderate spinal cord injury. J Neurotrauma 22:157–171PubMedGoogle Scholar
  95. Enns GM, Huhn SL (2008) Central nervous system therapy for lysosomal storage disorders. Neurosurg Focus 24:E12PubMedGoogle Scholar
  96. Erichsen AK, Koht J, Stray-Pedersen A et al (2009) Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain 132:1577–1588PubMedGoogle Scholar
  97. Eriksson PS, Perfilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedPubMedCentralGoogle Scholar
  98. Fan HC, Ho LI, Chi CS et al (2014) Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 23:441–458PubMedGoogle Scholar
  99. Farinazzo A, Turano E, Marconi S et al (2015) Murine adipose-derived mesenchymal stromal cell vesicles: in vitro clues for neuroprotective and neuroregenerative approaches. Cytotherapy 17:571–578PubMedGoogle Scholar
  100. Feldkotter M, Schwarzer V, Wirth R et al (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368PubMedGoogle Scholar
  101. Finsterer J (2005) Mitochondrial neuropathy. Clin Neurol Neurosurg 107:181–186PubMedGoogle Scholar
  102. Finsterer J (2011) Inherited mitochondrial neuropathies. J Neurol Sci 304:9–16PubMedGoogle Scholar
  103. Finsterer J, Scorza FA (2017) Effects of antiepileptic drugs on mitochondrial functions, morphology, kinetics, biogenesis, and survival. Epilepsy Res 136:5–11PubMedGoogle Scholar
  104. Finsterer J, Zarrouk-Mahjoub S (2016) Treatment of muscle weakness in neuromuscular disorders. Expert Rev Neurother 16:1383–1395PubMedGoogle Scholar
  105. Fischbach KF, Heisenberg M (1981) Structural brain mutant of Drosophila melanogaster with reduced cell numbers in the medulla cortex and with normal optomotor yaw response. Proc Natl Acad Sci U S A 78:1105–1109PubMedPubMedCentralGoogle Scholar
  106. Fortier LA, Travis AJ (2011) Stem cells in veterinary medicine. Stem Cell Res Ther 2:9PubMedPubMedCentralGoogle Scholar
  107. Franco B, Bogdanik L, Bobinnec Y et al (2004) Shaggy, the homolog of glycogen synthase kinase 3, controls neuromuscular junction growth in Drosophila. J Neurosci 24:6573–6577PubMedGoogle Scholar
  108. Frisbie DD, Smith RK (2010) Clinical update on the use of mesenchymal stem cells in equine orthopaedics. Equine Vet J 42:86–89PubMedGoogle Scholar
  109. Fujita R, Tamai K, Aikawa E et al (2015) Endogenous mesenchymal stromal cells in bone marrow are required to preserve muscle function in mdx mice. Stem Cells 33:962–975PubMedGoogle Scholar
  110. Galli R, Borello U, Gritti A et al (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3:986–991PubMedGoogle Scholar
  111. Gariepy CE (2004) Developmental disorders of the enteric nervous system: genetic and molecular bases. J Pediatr Gastroenterol Nutr 39:5–11PubMedGoogle Scholar
  112. Garne E, Dolk H, Krageloh-Mann I et al (2008) Cerebral palsy and congenital malformations. Eur J Paediatr Neurol 12:82–88PubMedGoogle Scholar
  113. Genova E, Pelin M, Sasaki K et al (2018) Induced pluripotent stem cells as a model for therapy personalization of pediatric patients: disease modeling and drug adverse effects prevention. Curr Med Chem 25(24):2826–2839.  https://doi.org/10.2174/0929867324666170804150131CrossRefPubMedGoogle Scholar
  114. Gerlinger M, Rowan AJ, Horswell S (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892PubMedPubMedCentralGoogle Scholar
  115. Gershon MD, Ratcliffe EM (2004) Developmental biology of the enteric nervous system: pathogenesis of Hirschsprung’s disease and other congenital dysmotilities. Semin Pediatr Surg 13:224–235PubMedPubMedCentralGoogle Scholar
  116. Goldman SA (2016) Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell 18:174–188PubMedPubMedCentralGoogle Scholar
  117. Gonçalves MA, de Vries AA, Holkers M et al (2006) Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet 15:213–221PubMedGoogle Scholar
  118. Grill R, Murai K, Blesch A et al (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17:5560–5572PubMedGoogle Scholar
  119. Gupta S, Kulhara P (2010) What is schizophrenia: a neurodevelopmental or neurodegenerative disorder or a combination of both? A critical analysis. Indian J Psychiatry 52:21–27PubMedPubMedCentralGoogle Scholar
  120. Gutierrez-Nibeyro SD (2011) Commercial cell-based therapies for musculoskeletal injuries in horses. Vet Clin North Am Equine Pract 27:363–371PubMedGoogle Scholar
  121. Hall MN, Hall JK, Cadwallader AB et al (2017) Transplantation of skeletal muscle stem cells. Methods Mol Biol 1556:237–244PubMedGoogle Scholar
  122. Hamid S, Ray H (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J 17:1256–1269PubMedPubMedCentralGoogle Scholar
  123. Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079PubMedGoogle Scholar
  124. Hassani A, Horvath R, Chinnery PF (2010) Mitochondrial myopathies: developments in treatment. Curr Opin Neurol 23:459–465PubMedGoogle Scholar
  125. Hatten ME, Kettenmann H, Ransom BR (1991) Glial cell lineage. Glia 4:124–243Google Scholar
  126. Heilker R, Traub S, Reinhardt P et al (2014) iPS cell derived neuronal cells for drug discovery. Trends Pharmacol Sci 35:510–519PubMedGoogle Scholar
  127. Hermann A, Storch A (2013) Induced neural stem cells (iNSCs) in neurodegenerative diseases. J Neural Transm 120(Suppl 1):S19–S25PubMedGoogle Scholar
  128. Hermann A, Gastl R, Liebau S et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117:4411–4422PubMedGoogle Scholar
  129. Hermann A, Maisel M, Wegner F et al (2006a) Multipotent neural stem cells from the adult tegmentum with dopaminergic potential develop essential properties of functional neurons. Stem Cells 24:949–964PubMedGoogle Scholar
  130. Hermann A, Maisel M, Storch A (2006b) Epigenetic conversion of human adult bone mesodermal stromal cells into neuroectodermal cell types for replacement therapy of neurodegenerative disorders. Expert Opin Biol Ther 6:653–670PubMedGoogle Scholar
  131. Hessinger C, Technau GM, Rogulja-Ortmann A (2017) The Drosophila Hox gene Ultrabithorax acts in both muscles and motoneurons to orchestrate formation of specific neuromuscular connections. Development 144:139–150PubMedPubMedCentralGoogle Scholar
  132. Hiemer SE, Varelas X (2013) Stem cell regulation by the Hippo pathway. Biochim Biophys Acta 1830:2323–2334PubMedGoogle Scholar
  133. Hillger JM, Lieuw WL, Heitman LH et al (2017) Label-free technology and patient cells: from early drug development to precision medicine. Drug Discov Today 22:1808–1815PubMedGoogle Scholar
  134. Hilt RJ, Chaudhari M, Bell JF et al (2014) Side effects from use of one or more psychiatric medications in a population-based sample of children and adolescents. J Child Adolesc Psychopharmacol 24:83–89PubMedPubMedCentralGoogle Scholar
  135. Hirsch NP (2007) Neuromuscular junction in health and disease. Br J Anaesth 99:132–138PubMedGoogle Scholar
  136. Hodgson B, Mafi R, Mafi P et al (2018) The regulation of differentiation of mesenchymal stem-cells into skeletal muscle: a look at signalling molecules involved in myogenesis. Curr Stem Cell Res Ther 13(5):384–407.  https://doi.org/10.2174/1574888X11666170907113151CrossRefPubMedGoogle Scholar
  137. Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97:6242–6244PubMedGoogle Scholar
  138. Horner PJ, Fred HG (2000) Regenerating the damaged central nervous system. Nature 407:963–970PubMedGoogle Scholar
  139. Hou XQ, Wang L, Wang FG et al (2017) Combination of RNA interference and stem cells for treatment of central nervous system diseases. Genes (Basel) 8:135.  https://doi.org/10.3390/genes8050135CrossRefGoogle Scholar
  140. Hryhorowicz S, Walczak M, Zakerska-Banaszak O et al (2018) Pharmacogenetics of cannabinoids. Eur J Drug Metab Pharmacokinet 43(1):1–12.  https://doi.org/10.1007/s13318-017-0416-zCrossRefPubMedGoogle Scholar
  141. Hu BY, Weick JP, Yu J, Ma LX et al (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107:4335–4340PubMedPubMedCentralGoogle Scholar
  142. Huang HI, Shih R (2015) Neurotropic enterovirus infections in the central nervous system. Viruses 7:6051–6066PubMedPubMedCentralGoogle Scholar
  143. Ibi D, de la Feunte Revenga M, Kezunovic N et al (2017) Antipsychotic-induced Hdac2 transcription via NF-κB leads to synaptic and cognitive side effects. Nat Neurosci 20:1247–1259Google Scholar
  144. Ichim TE, Solano F, Glenn E et al (2007) Stem cell therapy for autism. J Transl Med 5:30PubMedPubMedCentralGoogle Scholar
  145. Imitola J, Raddassi K, Park KI et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101:18117–18122PubMedPubMedCentralGoogle Scholar
  146. Ishiuchi T, Torres-Padilla ME (2013) Towards an understanding of the regulatory mechanisms of totipotency. Curr Opin Genet Dev 23:512–518PubMedGoogle Scholar
  147. Islam MN, Das SR, Emin MT et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765PubMedPubMedCentralGoogle Scholar
  148. Jackson JS, Golding JP, Chapon C et al (2010) Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 1:17.  https://doi.org/10.1186/scrt17CrossRefPubMedPubMedCentralGoogle Scholar
  149. Jaeger J, Martinez-Arias A (2009) Getting the measure of positional information. PLoS Biol 7:e1000081PubMedCentralGoogle Scholar
  150. Jang J, Yoo JE, Lee JA et al (2012) Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Exp Mol Med 44:202–213PubMedGoogle Scholar
  151. Jarmalaviciute A, Tunaitis V, Pivoraite U et al (2015) Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy 17:932–939PubMedGoogle Scholar
  152. Jarvinen TA, Järvinen TL, Kaariainen M et al (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764PubMedGoogle Scholar
  153. Jarvinen TA, Jarvinen TL, Kaariainen M et al (2007) Muscle injuries: optimizing recovery. Best Pract Res Clin Rheumatol 21:317–331PubMedGoogle Scholar
  154. Jarvinen TA, Jarvinen M, Kalimo H (2014) Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J 3:337–345PubMedPubMedCentralGoogle Scholar
  155. Jarvis S, Glinianaia SV, Torrioli MG et al (2003) Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet 362:1106–1111PubMedGoogle Scholar
  156. Jarvis S, Glinianaia SV, Blair E (2006) Cerebral palsy and intrauterine growth. Clin Perinatal 33:285–300Google Scholar
  157. Javitt DC, Spencer KM, Thaker GK et al (2008) Neurophysiological biomarkers for drug development in schizophrenia. Nature Rev Drug Discov 7:68–83Google Scholar
  158. Jerath NU, Shy ME (2015) Hereditary motor and sensory neuropathies: understanding molecular pathogenesis could lead to future treatment strategies. Biochim Biophys Acta 1852:667–678PubMedGoogle Scholar
  159. Ji JF, He BP, Dheen ST et al (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22:415–427PubMedGoogle Scholar
  160. Jiang D, Gao F, Zhang Y et al (2016) Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis 7:e2467.  https://doi.org/10.1038/cddis.2016.358CrossRefPubMedPubMedCentralGoogle Scholar
  161. Johnson RT (1984) Slow viral infections of the nervous system. J Infect Dis Antimicrob Agents 1:85–89Google Scholar
  162. Johnson BE, Mazor T, Hong C (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193PubMedGoogle Scholar
  163. Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9:11–21PubMedGoogle Scholar
  164. Joo WJ, Sweeney LB, Liang L et al (2013) Linking cell fate, trajectory choice, and target selection: genetic analysis of Sema-2b in olfactory axon targeting. Neuron 78:673–686PubMedPubMedCentralGoogle Scholar
  165. Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89PubMedGoogle Scholar
  166. Jubelt B (1992) Motor neuron diseases and viruses: poliovirus, retroviruses, and lymphomas. Curr Opin Neurol Neurosurg 5:655–658PubMedGoogle Scholar
  167. Jubelt B, Cashman NR (1987) Neurological manifestations of the post-polio syndrome. Crit Rev Neurobiol 3:199–220PubMedGoogle Scholar
  168. Jubelt B, Drucker J (1999) Poliomyelitis and the post-polio syndrome. In: Younger DS (ed) Motor disorders. Williams & Wilkins, Philadelphia, pp 381–395Google Scholar
  169. Kabashi E, Brustein E, Champagne N et al (2011) Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta 1812:335–345PubMedGoogle Scholar
  170. Kallur T, Darsalia V, Lindvall O et al (2006) Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J Neurosci Res 84:1630–1644PubMedGoogle Scholar
  171. Kang JF, Tang BS, Guo JF (2016a) The progress of induced pluripotent stem cells as models of Parkinson’s disease. Stem Cells Int 2016:4126214.  https://doi.org/10.1155/2016/4126214CrossRefPubMedPubMedCentralGoogle Scholar
  172. Kang JM, Yeon BK, Cho SJ et al (2016b) Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J Alzheimers Dis 54:879–889PubMedGoogle Scholar
  173. Kao HT, Ryoo K, Lin A et al (2017) Synapsins regulate brain-derived neurotrophic factor-mediated synaptic potentiation and axon elongation by acting on membrane rafts. Eur J Neurosci 45:1085–1101PubMedPubMedCentralGoogle Scholar
  174. Katsuda T, Tsuchiya R, Kosaka N et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197PubMedPubMedCentralGoogle Scholar
  175. Keshishian H, Chiba A (1993) Neuromuscular development in Drosophila: insights from single neurons and single genes. Trends Neurosci 16:278–283PubMedGoogle Scholar
  176. Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955PubMedGoogle Scholar
  177. Kim YJ, Lee G (2013) Candidate ALS therapeutics motor toward “in vitro clinical trials”. Cell Stem Cell 12:633–634PubMedGoogle Scholar
  178. Kim GM, Xu J, Xu J et al (2001) Tumor necrosis factor receptor deletion reduces nuclear factor-kappaB activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J Neurosci 21:6617–6625PubMedGoogle Scholar
  179. Kim H, Cooke MJ, Shoichet MS (2012) Creating permissive microenvironments for stem cell transplantation into the central nervous system. Trends Biotech 30:55–63Google Scholar
  180. Kley RA, Tarnopolsky MA, Vorgerd M (2008) Creatine treatment in muscle disorders: a meta-analysis of randomised controlled trials. J Neurol Neurosurg Psychiatry 79:366–367PubMedGoogle Scholar
  181. Kmet M, Guo C, Edmondson C et al (2013) Directed differentiation of human embryonic stem cells into corticofugal neurons uncovers heterogeneous Fezf2-expressing subpopulations. PLoS One 8:e67292PubMedPubMedCentralGoogle Scholar
  182. Ko HC, Gelb BD (2014) Concise review: drug discovery in the age of the induced pluripotent stem cell. Stem Cells Transl Med 3:500–509PubMedPubMedCentralGoogle Scholar
  183. Kokontis L, Gutmann L (2000) Current treatment of neuromuscular diseases. Arch Neurol 57:939–943PubMedGoogle Scholar
  184. Koon AC, Chan HYE (2017) Drosophila melanogaster as a model organism to study RNA toxicity of repeat expansion-associated neurodegenerative and neuromuscular diseases. Front Cell Neurosci 11:1–22Google Scholar
  185. Koyuncu OO, Hogue IB, Enquist LW (2013) Virus infections in the nervous system. Cell Host Microbe 13:379–393PubMedPubMedCentralGoogle Scholar
  186. Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells-a critical review. APMIS 113:831–844PubMedGoogle Scholar
  187. Kuzdas-Wood D, Stefanova N, Jellinger KA et al (2014) Towards translational therapies for multiple system atrophy. Prog Neurobiol 118:19–35PubMedPubMedCentralGoogle Scholar
  188. Lacorazza HD, Flax JD, Snyder EY et al (1996) Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med 2:424–429PubMedGoogle Scholar
  189. Lai RC, Yeo RW, Lim SK (2015) Mesenchymal stem cell exosomes. Semin Cell Dev Biol 40:82–88PubMedGoogle Scholar
  190. Laing NG (2012) Genetics of neuromuscular disorders. Crit Rev Clin Lab Sci 49:33–48PubMedGoogle Scholar
  191. Lake JI, Heuckeroth RO (2013) Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 305:G1–G24PubMedPubMedCentralGoogle Scholar
  192. Lala-Tabbert N, Fu D, Wiper-Bergeron N (2016) Induction of CCAAT/Enhancer-Binding protein beta expression with the phosphodiesterase inhibitor Isobutylmethylxanthine improves myoblast engraftment into dystrophic muscle. Stem Cells Transl Med 5:500–510PubMedPubMedCentralGoogle Scholar
  193. Lamfers M, Idema S, van Milligen F et al (2009) Homing properties of adipose-derived stem cells to intracerebral glioma and the effects of adenovirus infection. Cancer Lett 274:78–87PubMedGoogle Scholar
  194. Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114:1150–1157PubMedPubMedCentralGoogle Scholar
  195. Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32:795–803PubMedPubMedCentralGoogle Scholar
  196. Lange W (1975) Cell number and cell density in the cerebellar cortex of man and other mammals. Cell Tiss Res 157:115–124Google Scholar
  197. Lara-Velazquez M, Akinduroa OO, Reimera R et al (2017) Stem cell therapy and its potential role in pituitary disorders. Neuroendocrinology 24:1–9Google Scholar
  198. Lax NZ, Hepplewhite PD, Reeve AK et al (2012) Cerebellar ataxia in patients with mitochondrial DNA disease: a molecular clinicopathological study. J Neuropathol Exp Neurol 71:148–161PubMedPubMedCentralGoogle Scholar
  199. Lax NZ, Gorman GS, Turnbull DM (2017) Central nervous system involvement in mitochondrial disease. Neuropathol Appl Neurobiol 43:102–118PubMedGoogle Scholar
  200. Lee SK, Pfaff SL (2001) Transcriptional networks regulating neuronal identity in the developing spinal cord. Nat Neurosci Suppl 4:1183–1191Google Scholar
  201. Lee J, Kuroda S, Shichinohe H et al (2003) Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology 23:169–180PubMedGoogle Scholar
  202. Lee M, Liu T, Im W et al (2016) Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model. Eur J Neurosci 44:2114–2119PubMedGoogle Scholar
  203. Lefebvre S, Bürglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165PubMedGoogle Scholar
  204. Lefebvre S, Burlet P, Liu Q et al (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269PubMedGoogle Scholar
  205. Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7PubMedPubMedCentralGoogle Scholar
  206. Li XJ, Du ZW, Zarnowska ED et al (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221PubMedGoogle Scholar
  207. Li Y, Wu WH, Hsu CW et al (2014) Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther 22:1688–1697PubMedPubMedCentralGoogle Scholar
  208. Li H, Saucedo-Cuevas L, Regla-Nava JA et al (2016a) Zika virus infects neural progenitors in the adult mouse brain and alters proliferation cell. Stem Cell 19:593–598Google Scholar
  209. Li Y, Chan L, Nguyen HV, Tsang SH (2016b) Personalized medicine: cell and gene therapy based on patient-specific iPSC-derived retinal pigment epithelium cells. Adv Exp Med Biol 854:549–555PubMedGoogle Scholar
  210. Lin H, Li Q, Lei Y (2017) An integrated miniature bioprocessing for personalized human induced pluripotent stem cell expansion and differentiation into neural stem cells. Sci Rep 7:40191.  https://doi.org/10.1038/srep40191CrossRefPubMedPubMedCentralGoogle Scholar
  211. Liu Y, Deng W (2016) Reverse engineering human neurodegenerative disease using pluripotent stem cell technology. Brain Res 1638:30–41PubMedGoogle Scholar
  212. Liu L, Rando TA (2011) Manifestations and mechanisms of stem cell aging. J Cell Biol 193:257–266PubMedPubMedCentralGoogle Scholar
  213. Liu Y, Zhang SC (2010) Human stem cells as a model of motoneuron development and diseases. Ann N Y Acad Sci 1198:192–200PubMedPubMedCentralGoogle Scholar
  214. Liu H, Jiang D, Chi F et al (2012) The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Protein Cell 3:291–304PubMedPubMedCentralGoogle Scholar
  215. Liu Y, Weick JP, Liu H et al (2013) Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 31:440–447PubMedPubMedCentralGoogle Scholar
  216. Lloyd TE, Taylor JP (2010) Flightless Flies: Drosophila models of neuromuscular disease. Ann N Y Acad Sci 1184:e1–e20Google Scholar
  217. Lloyd-Lewis B, Harris OB, Watson CJ et al (2017) Mammary stem cells: premise, properties, and perspectives. Trends Cell Biol 27:556–567PubMedGoogle Scholar
  218. Lnenicka GA, Keshishian H (2000) Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. J Neurobiol 43:186–197PubMedGoogle Scholar
  219. Lorant J, Saury C, Schleder C et al (2018) Skeletal muscle regenerative potential of human MuStem cells following transplantation into injured mice muscle. Mol Ther 26(2):618–633.  https://doi.org/10.1016/j.ymthe.2017.10.013CrossRefPubMedGoogle Scholar
  220. Lorenzoni PJ, Scola RH, Kay CSK et al (2012) Congenital myasthenic syndrome: a brief review. Pediatric Neurol 46:141–148Google Scholar
  221. Lossing A, Moore M, Zuhl M (2017) Dance as a treatment for neurological disorders. Body Mov Dance Psychother 12:170–184Google Scholar
  222. Loy JH, Merry SN, Hetrick SE et al (2017) Atypical antipsychotics for disruptive behaviour disorders in children and youths. Cochrane Database of Syst Rev 9:CD008559.  https://doi.org/10.1002/14651858.CD008559.pub2CrossRefGoogle Scholar
  223. Lu F, Zhang Y (2015) Cell totipotency: molecular features, induction, and maintenance. Natl Sci Rev 2:217–225PubMedPubMedCentralGoogle Scholar
  224. Lu A, Poddar M, Tang Y et al (2014) Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin2/2 mice. Hum Mol Genet 3:4786–4800Google Scholar
  225. Lyons MK (2011) Deep brain stimulation: current and future clinical applications. Mayo Clin Proc 86:662–672PubMedPubMedCentralGoogle Scholar
  226. Ma H, Folmes CD, Wu J et al (2015) Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature 524:234–238PubMedGoogle Scholar
  227. Mackay-Sim A (2013) Patient-derived stem cells: pathways to drug discovery for brain diseases. Front Cell Neurosci 7:29.  https://doi.org/10.3389/fncel.2013.00029CrossRefPubMedPubMedCentralGoogle Scholar
  228. Maclean S, Khan WS, Malik AA et al (2012) The potential of stem cells in the treatment of skeletal muscle injury and disease. Stem Cells Int 2012.  https://doi.org/10.1155/2012/282348
  229. Mafi R, Hindocha S, Mafi P et al (2011) Sources of adult mesenchymal stem cells applicable for musculoskeletal applications—a systematic review of the literature. Open Orthop J 5(Suppl 2):242–248PubMedPubMedCentralGoogle Scholar
  230. Maherali N, Hochedlinger K (2008) Induced pluripotency of mouse and human somatic cells. Cold Spring Harb Symp Quant Biol 73:157–162PubMedGoogle Scholar
  231. Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70PubMedGoogle Scholar
  232. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963PubMedPubMedCentralGoogle Scholar
  233. Malone DA, Pandya MM (2006) Behavioral neurosurgery. Adv Neurol 99:241–247PubMedGoogle Scholar
  234. Manzanares M, Rodriguez TA (2013) Development: Hippo signalling turns the embryo inside out. Curr Biol 23:R559–R561PubMedGoogle Scholar
  235. Marano G, Traversi G, Romagnoli E (2011) Cardiologic side effects of psychotropic drugs. Am J Geriatr Cardiol 8:243–253Google Scholar
  236. Marder E (2002) Non-mammalian models for studying neural development and function. Nature 417:318–321PubMedGoogle Scholar
  237. Maumus M, Jorgensen C, Noel D (2013) Mesenchymal stem cells in regenerative medicine applied to rheumatic disease: role of secretome and exosomes. Biochimie 95:2229–2234PubMedGoogle Scholar
  238. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedPubMedCentralGoogle Scholar
  239. Mayberg HS, Lozano AM, Voon V (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660PubMedPubMedCentralGoogle Scholar
  240. McConnell SK (1995) The generation of neuronal diversity in the developing central nervous system. J Neurosci 15:6987–6998PubMedGoogle Scholar
  241. McTigue DM, Horner PJ, Stokes BT, Gage FH (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18:5354–5365PubMedGoogle Scholar
  242. McVey KA, Mink JA, Snapp IB et al (2012) Caenorhabditis elegans: an emerging model system for pesticide neurotoxicity. J Environ Anal Toxicol S4:003.  https://doi.org/10.4172/2161-0525.S4-003CrossRefGoogle Scholar
  243. Meadow LA, Gell D, Broadie K et al (1994) The cell adhesion molecule, connectin, and the development of the Drosophila neuromuscular system. J Cell Sci 107:321–328Google Scholar
  244. Mendelsohn AR, Larrick JW (2015) Stem cell depletion by global disorganization of the H3K9me3 epigenetic marker in aging. Rejuvenation Res 18:371–375PubMedGoogle Scholar
  245. Menon KP, Carrillo RA, Zinn K (2013) Development and plasticity of the Drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol 2:647–670PubMedPubMedCentralGoogle Scholar
  246. Metzger M, Caldwell C, Barlow AJ et al (2009a) Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 136:2214–2225PubMedGoogle Scholar
  247. Metzger M, Bareiss PM, Danker T et al (2009b) Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology 137:2063–2073PubMedGoogle Scholar
  248. Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296PubMedGoogle Scholar
  249. Mian MK, Campos M, Sheth S et al (2010) Deep brain stimulation for obsessive-compulsive disorder: past, present, and future. J Neurosurg 29:E10Google Scholar
  250. Mizuno H, Zuk PA, Zhu M et al (2002) Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109:199–209PubMedGoogle Scholar
  251. Moavero R, Santarone ME, Galasso C et al (2017) Cognitive and behavioral effects of new antiepileptic drugs in pediatric epilepsy. Brain Dev 39:464–469PubMedGoogle Scholar
  252. Moller AR (2001) Symptoms and signs caused by neural plasticity. Neurol Res 23:565–572PubMedGoogle Scholar
  253. Montarras D, Morgan J, Collins C et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067Google Scholar
  254. Moore XL, Lu J, Sun L et al (2004) Endothelial progenitor cells’ “homing” specificity to brain tumors. Gene Ther 1:811–818Google Scholar
  255. Morgani SM, Brickman JM (2014) The molecular underpinnings of totipotency. Philos Trans R Soc Lond B Biol Sci 369(1657):pii: 20130549.  https://doi.org/10.1098/rstb.2013.0549CrossRefGoogle Scholar
  256. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074PubMedGoogle Scholar
  257. Morrison JI, Loof S, He P et al (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172:433–440PubMedPubMedCentralGoogle Scholar
  258. Morshead CM, Reynolds BA, Craig CG et al (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082PubMedGoogle Scholar
  259. Muench J, Hamer AM (2010) Adverse effects of antipsychotic medications. Am Fam Physician 81:617–622PubMedGoogle Scholar
  260. Muntoni F, Brown S, Sewry C et al (2002) Muscle development genes: their relevance in neuromuscular disorders. Neuromuscul Disord 12:438–446PubMedGoogle Scholar
  261. Namiki J, Kojima A, Tator CH (2009) Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 17:1219–1231Google Scholar
  262. Narayanan K, Mishra S, Singh S et al (2017) Engineering concepts in stem cell research. Biotechnol J 12.  https://doi.org/10.1002/biot.201700066
  263. Narita Y, Rijli FM (2009) Hox genes in neural patterning and circuit formation in the mouse hindbrain. Curr Top Dev Biol 88:139–167PubMedGoogle Scholar
  264. Nathanson N (2008) The pathogenesis of poliomyelitis: what we don’t know. Adv Virus Res 71:1–50PubMedGoogle Scholar
  265. Naya FJ, Olson E (1999) MEF2: a transcriptional target for signalling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol 11:683–688PubMedGoogle Scholar
  266. Nelson CM (2009) Geometric control of tissue morphogenesis. Biochim Biophys Acta 1793:903–910PubMedPubMedCentralGoogle Scholar
  267. Neupane M, Chang CC, Kiupel M et al (2008) Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A 14:1007–1015PubMedGoogle Scholar
  268. Newgreen D, Young HM (2002a) Enteric nervous system: development and developmental disturbances—part 1. Pediatr Dev Pathol 5:224–247PubMedGoogle Scholar
  269. Newgreen D, Young HM (2002b) Enteric nervous system: development and developmental disturbances—part 2. Pediatr Dev Pathol 5:329–349PubMedGoogle Scholar
  270. Nicolson GL (2008) Chronic bacterial and viral infections in neurodegenerative and neurobehavioral diseases. Labmedicine 39:291–299Google Scholar
  271. Nieto MA (1996) Molecular biology of axon guidance. Neuron 17:1039–1048PubMedGoogle Scholar
  272. Nishio Y, Koda M, Hashimoto M et al (2009) Deletion of macrophage migration inhibitory factor attenuates neuronal death and promotes functional recovery after compression-induced spinal cord injury in mice. Acta Neuropathol 117:321–328PubMedGoogle Scholar
  273. Noyola DE, Jimenez-Capdeville ME, Demmler-Harrison GJ (2010) Central nervous system disorders in infants with congenital cytomegalovirus infection. Neurol Res 32:278–284PubMedGoogle Scholar
  274. O’Kane CJ (2011) Drosophila as a model organism for the study of neuropsychiatric disorders. In: Hagan JJ (ed) Molecular and functional models in neuropsychiatry. Current topics in behavioral neurosciences, vol 7. Springer, Berlin, pp 37–60Google Scholar
  275. Obermair FJ, Schroter A, Thallmair M (2008) Endogenous neural progenitor cells as therapeutic target after spinal cord injury. Physiology 23:296–304PubMedGoogle Scholar
  276. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedGoogle Scholar
  277. Orbay H, Mizuno H (2013) Translational research in stem cell treatment of neuromuscular diseases. ISRN Stem Cells 2013:947329.  https://doi.org/10.1155/2013/947329CrossRefGoogle Scholar
  278. Ottoboni L, Merlini A, Martino G (2017) Neural stem cell plasticity: advantages in therapy for the injured central nervous system. Front Cell Dev Biol 5:52PubMedPubMedCentralGoogle Scholar
  279. Page RL, Malcuit C, Vilner L et al (2011) Restoration of skeletal muscle defects with adult human cells delivered on fibrin microthreads. Tissue Eng Part A 17:2629–2640PubMedGoogle Scholar
  280. Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404PubMedGoogle Scholar
  281. Pandya H, Shen MJ, Ichikawa DM et al (2017) Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 20:753–759PubMedPubMedCentralGoogle Scholar
  282. Pannerec A, Marazzi G, Sassoon D (2012) Stem cells in the hood: the skeletal muscle niche. Trends Mol Med 18:599–606PubMedGoogle Scholar
  283. Pareyson D, Piscosquito G, Moroni I et al (2013) Peripheral neuropathy in mitochondrial disorders. Lancet Neurol 12:1011–1024PubMedGoogle Scholar
  284. Parisi MA, Kapur RP (2000) Genetics of Hirschsprung disease. Curr Opin Pediatr 12:610–617PubMedGoogle Scholar
  285. Park IH, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886PubMedPubMedCentralGoogle Scholar
  286. Parr AM, Kulbatski I, Tator CH (2007) Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J Neurotrauma 24:835–845PubMedGoogle Scholar
  287. Patten SA, Armstrong GA, Lissouba A et al (2014) Fishing for causes and cures of motor neuron disorders. Dis Model Mech 7:799–809PubMedPubMedCentralGoogle Scholar
  288. Peerani R, Zandstra PW (2010) Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest 120:60–70PubMedPubMedCentralGoogle Scholar
  289. Pendleton C, Li Q, Chesler DA et al (2013) Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PLoS One 8:e58198PubMedPubMedCentralGoogle Scholar
  290. Penzo-Mendez AI, Stanger BZ (2015) Organ-size regulation in mammals. Cold Spring Harb Perspect Biol 7:a019240PubMedPubMedCentralGoogle Scholar
  291. Pera MF, Reubinoff B, Trounson A (2000) Human embryonic stem cells. J Cell Sci 113:5–10PubMedGoogle Scholar
  292. Perry RL, Rudnick MA (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 5:750–767Google Scholar
  293. Pfeffer G, Chinnery PF (2013) Diagnosis and treatment of mitochondrial myopathies. Ann Med 45:4–16PubMedGoogle Scholar
  294. Philippidou P, Dasen JS (2013) Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80:12–34PubMedGoogle Scholar
  295. Piccin D, Morshead CM (2010) Potential and pitfalls of stem cell therapy in old age. Dis Model Mech 3:421–425PubMedGoogle Scholar
  296. Pierret C, Morrison JA, Kirk MD (2008) Treatment of lysosomal storage disorders: Focus on the neuronal ceroid-lipofuscinoses. Acta Neurobiol Exp 68:429–442Google Scholar
  297. Pini V, Morgan JE, Muntoni F et al (2017) Genome editing and muscle stem cells as a therapeutic tool for muscular dystrophies. Curr Stem Cell Rep 3:137–148PubMedPubMedCentralGoogle Scholar
  298. Pisciotta A, Riccio M, Carnevale G et al (2015) Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 6:156PubMedPubMedCentralGoogle Scholar
  299. Plantie E, Migocka-Patrzałek M, Daczewska M et al (2015) Model organisms in the fight against muscular dystrophy: lessons from Drosophila and zebrafish. Molecules 20:6237–6253PubMedPubMedCentralGoogle Scholar
  300. Platt FM, Lachmann RH (2009) Treating lysosomal storage disorders: current practice and future prospects. Biochim Biophys Acta 1793:737–745PubMedGoogle Scholar
  301. Pluchino S, Quattrini A, Brambilla E et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694PubMedGoogle Scholar
  302. Pluchino S, Gritti A, Blezer E et al (2009) Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 66:343–354PubMedGoogle Scholar
  303. Poe LB, Coleman LL, Mahmud F (1989) Congenital central nervous system anomalies. RadioGraphics 9:801–826PubMedGoogle Scholar
  304. Price DL, Sisodia SS, Borchelt DR (1998) Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282:1079–1083PubMedGoogle Scholar
  305. Prior TW (2010) Spinal muscular atrophy: a time for screening. Curr Opin Pediatr 22(6):696–702PubMedGoogle Scholar
  306. Quigley HA, Addicks EM, Green WG (1982) Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 100:135–146PubMedGoogle Scholar
  307. Rajput BS, Chakrabarti SK, Dongare VS et al (2015) Human umbilical cord mesenchymal stem cells in the treatment of Duchenne Muscular Dystrophy: safety and feasibility study in India. J Stem Cells 10:141–156PubMedGoogle Scholar
  308. Rakic P (1985) Limits of neurogenesis in primates. Science 227:1054–1056PubMedGoogle Scholar
  309. Ramer MS, John VP, Stephen BM (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature 403:312–316PubMedGoogle Scholar
  310. Ramos A, Camargo FD (2012) The Hippo signaling pathway and stem cell biology. Trends Cell Biol 22:339–346PubMedPubMedCentralGoogle Scholar
  311. Redondo PA, Pavlou M, Loizidou M et al (2017) Elements of the niche for adult stem cell expansion. J Tissue Eng 8.  https://doi.org/10.1177/2041731417725464
  312. Regal M, Paramo C, Sierra SM et al (2001) Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain. Clin Endocrinol 55:73Google Scholar
  313. Reif A, Fritzen S, Finger M et al (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522PubMedGoogle Scholar
  314. Relaix F, Rocancourt D, Mansouri A et al (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953PubMedGoogle Scholar
  315. Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23PubMedGoogle Scholar
  316. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305PubMedPubMedCentralGoogle Scholar
  317. Rohwedel J, Maltsev V, Bober E et al (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164:87–101PubMedGoogle Scholar
  318. Rosengardten Y, McKenna T, Grochova D et al (2011) Stem cell depletion in Hutchinson–Gilford progeria syndrome. Aging Cell 10:1011–1020PubMedGoogle Scholar
  319. Ross CA, Tabrizi SJ (2010) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98Google Scholar
  320. Rossi CA, Flaibani M, Blaauw B et al (2011) In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB J 25:2296–2304PubMedGoogle Scholar
  321. Roux M, Zaffran S (2016) Hox genes in cardiovascular development and diseases. J Dev Biol 4:14PubMedCentralGoogle Scholar
  322. Ruff CA, Fehlings MG (2010) Neural stem cells in regenerative medicine: bridging the gap. Panminerva Med 52:125–147PubMedGoogle Scholar
  323. Ruller CM, Tabor-Godwin JM, Van Deren Jr DA et al (2012) Neural stem cell depletion and CNS developmental defects after enteroviral infection. Am J Pathol 180:1107–1120PubMedPubMedCentralGoogle Scholar
  324. Ruven C, Li W, Li H et al (2017) Transplantation of embryonic spinal cord derived cells helps to prevent muscle atrophy after peripheral nerve injury. Int J Mol Sci 18:511.  https://doi.org/10.3390/ijms18030511CrossRefPubMedCentralGoogle Scholar
  325. Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57:16–25PubMedGoogle Scholar
  326. Salah-Mohellibi N, Millet G, André-Schmutz I et al (2006) Bone marrow transplantation attenuates the myopathic phenotype of a muscular mouse model of spinal muscular atrophy. Stem Cells 24:2723–2732PubMedGoogle Scholar
  327. Salehi H, Amirpour N, Niapour A et al (2016) An overview of neural differentiation potential of human adipose derived stem cells. Stem Cell Rev 12:26–41PubMedGoogle Scholar
  328. Scaglia F, Wong LJ, Vladutiu GD et al (2015) Predominant cerebellar volume loss as a neuroradiologic feature of pediatric respiratory chain defects. Am J Neuroradiol 26:1675–1680Google Scholar
  329. Schappi MG, Staiano A, Milla PJ et al (2013) A practical guide for the diagnosis of primary enteric nervous system disorders. J Pediatr Gastroenterol Nutr 57:677–686PubMedGoogle Scholar
  330. Schwalb JM, Hamani C (2008) The history and future of deep brain stimulation. Neurotherapeutics 5:3–13PubMedPubMedCentralGoogle Scholar
  331. Schwank G, Basler K (2010) Regulation of organ growth by morphogen gradients. Cold Spring Harb Perspect Biol 2:a001669PubMedPubMedCentralGoogle Scholar
  332. Schwartz MP, Hou Z, Propson NE et al (2015) Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc Natl Acad Sci U S A 112:12516–12521PubMedPubMedCentralGoogle Scholar
  333. Seale P, Sabourin LA, Girgis-Gabardo A et al (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786PubMedGoogle Scholar
  334. Segraves RT (1988) Sexual side-effects of psychiatric drugs. Intl J Psychiatry Med 18:243–252Google Scholar
  335. Sharifi MS (2013) Treatment of neurological and psychiatric disorders with deep brain stimulation; raising hopes and future challenges. Basic Clin Neurosci 4:266–270PubMedPubMedCentralGoogle Scholar
  336. Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Biol 8:703–713Google Scholar
  337. She S, Wei Q, Kang B et al (2017) Cell cycle and pluripotency: convergence on octamer-binding transcription factor 4 (review). Mol Med Rep 16:6459–6466PubMedPubMedCentralGoogle Scholar
  338. Shetty AK, Bates A (2016) Potential of GABA-ergic cell therapy for schizophrenia, neuropathic pain, and Alzheimer’s and Parkinson’s diseases. Brain Res 1638:74–87PubMedGoogle Scholar
  339. Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes & Dev 20:1692–1708Google Scholar
  340. Shi Y, Kirwan P, Livesey FJ (2012a) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7:1836–1846PubMedGoogle Scholar
  341. Shi Y, Kirwan P, Smith J et al (2012b) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15:477–486PubMedGoogle Scholar
  342. Short CA, Suarez-Zayas EA, Gomez TM (2016) Cell adhesion and invasion mechanisms that guide developing axons. Curr Opin Neurobiol 39:77–85PubMedPubMedCentralGoogle Scholar
  343. Sieburth D, Ch’ng Q, Dybbs M et al (2005) Systematic analysis of genes required for synapse structure and function. Nature 436:510–517PubMedGoogle Scholar
  344. Sierra A, Martin-Suáreza S, Valcarcel-Martin R et al (2015) Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal heurogenesis. Cell Stem Cell 16:488–503PubMedPubMedCentralGoogle Scholar
  345. Signer RA, Morrison SJ (2013) Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12:152–165PubMedPubMedCentralGoogle Scholar
  346. Simonen M, Pedersen V, Weinmann O et al (2003) Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38:201–211PubMedGoogle Scholar
  347. Slack JM (2008) Origin of stem cells in organogenesis. Science 322:1498–1501PubMedGoogle Scholar
  348. Smith RR, Shum-Siu A, Baltzley R et al (2006) Effects of swimming on functional recovery after incomplete spinal cord injury in rats. J Neurotrauma 23:908–919PubMedPubMedCentralGoogle Scholar
  349. Sohn J, Lu A, Tang Y et al (2015) Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet 24:3814–3829PubMedPubMedCentralGoogle Scholar
  350. Solmi M, Murru A, Pacchiarotti I et al (2017) Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag 13:757–777PubMedPubMedCentralGoogle Scholar
  351. Sousa BR, Parreira RC, Fonseca EA et al (2014) Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications. Cytometry 85:43–77PubMedGoogle Scholar
  352. Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104PubMedGoogle Scholar
  353. Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407:221–226PubMedGoogle Scholar
  354. Stanger BZ (2008) Organ size determination and the limits of regulation. Cell Cycle 7:318–324PubMedGoogle Scholar
  355. Stewart AM, Braubach O, Spitsbergen J et al (2014) Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 37:264–278PubMedPubMedCentralGoogle Scholar
  356. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192PubMedGoogle Scholar
  357. Swanson PA, McGavern DB (2015) Viral diseases of the central nervous system. Curr Opin Virol 11:44–54PubMedPubMedCentralGoogle Scholar
  358. Tajbakhsh S (2005) Skeletal muscle stem and progenitor cells: reconciling genetics and lineage. Exp Cell Res 306:364–372PubMedGoogle Scholar
  359. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedPubMedCentralGoogle Scholar
  360. Tamaki S, Eckert K, He D et al (2002) Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J Neurosci Res 69:976–986PubMedGoogle Scholar
  361. Taylor MV (2002) Muscle differentiation: how two cells become one. Curr Biol 12:R224–R228PubMedGoogle Scholar
  362. Tedesco FS, Dellavalle A, Diaz-Manera J et al (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–19PubMedPubMedCentralGoogle Scholar
  363. Tedesco FS, Hoshiya H, D'Antona G et al (2011) Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci Transl Med 3:96ra78.  https://doi.org/10.1126/scitranslmed.3002342CrossRefPubMedGoogle Scholar
  364. Terns RM, Terns MP (2014) CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends Genet 30:111–118PubMedPubMedCentralGoogle Scholar
  365. Tessier-Lavigne M, Goodman CS (1996) The molecular biology axon guidance. Science 274:1123–1133PubMedGoogle Scholar
  366. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S et al (2011) A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 28:1611–1682PubMedPubMedCentralGoogle Scholar
  367. Thier M, Worsdorfer P, Lakes YB et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10:473–479Google Scholar
  368. Thorley M, Malatras A, Duddy W et al (2015) Changes in communication between muscle stem cells and their environment with aging. J Neuromuscul Dis 2:205–217PubMedPubMedCentralGoogle Scholar
  369. Tokuzawa Y, Kaiho E, Maruyama M et al (2003) Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 23:2699–2708PubMedPubMedCentralGoogle Scholar
  370. Torrente Y, Camirand G, Pisati F et al (2003) Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model. J Cell Biol 162:511–520PubMedPubMedCentralGoogle Scholar
  371. Torrente Y, Gavina M, Belicchi M et al (2006) High-resolution X-ray microtomography for three-dimensional visualization of human stem cell muscle homing. FEBS Lett 580:5759–5764PubMedGoogle Scholar
  372. Trent C, Tsung N, Horvitz HR (1983) Egg–laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647PubMedPubMedCentralGoogle Scholar
  373. Tropepe V, Hitoshi S, Sirard C et al (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30:65–78PubMedGoogle Scholar
  374. Tsuchida T, Ensini M, Morton SB et al (1994) Topographic organisation of embryonic motor neurons defined by expression of LIM Homeobox genes. Cell 79:957–970PubMedGoogle Scholar
  375. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45PubMedGoogle Scholar
  376. Tueth MJ (1994) Emergencies caused by side effects of psychiatric medications. Am J Emerg Med 12:212–216PubMedGoogle Scholar
  377. Turinetto V, Orlando L, Giachino C (2017) Induced pluripotent stem cells: advances in the quest for genetic stability during reprogramming process. Int J Mol Sci 18:1952.  https://doi.org/10.3390/ijms18091952CrossRefPubMedCentralGoogle Scholar
  378. Tweedell KS (2017) The adaptability of somatic stem cells: a review. J Stem Cells Regen Med 13:3–13PubMedPubMedCentralGoogle Scholar
  379. van der Knaap MS, Valk J (1988) Classification of congenital abnormalities of the CNS. Am J Neuroradiol 9:315–326PubMedGoogle Scholar
  380. van Velthoven CT, Sheldon RA, Kavelaars A et al (2013) Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke 44:1426–1432PubMedPubMedCentralGoogle Scholar
  381. Verity C, Firth H, ffrench-Constant C (2003) Congenital abnormalities of the central nervous system. J Neurol Neurosurg Psychiatry 74:i3–i8PubMedPubMedCentralGoogle Scholar
  382. Villanova M, Bach JR (2015) Allogeneic mesenchymal stem cell therapy outcomes for three patients with spinal muscular atrophy type 1. Am J Phys Med Rehabil 94:410–415PubMedGoogle Scholar
  383. Vincent A (2008) Autoimmune disorders of the neuromuscular junction. Neurol India 56:305–313PubMedGoogle Scholar
  384. Vitale I, Manic G, De Maria R et al (2017) DNA damage in stem cells. Mol Cell 66:306–319PubMedGoogle Scholar
  385. Wagers AJ (2012) The stem cell niche in regenerative medicine. Cell Stem Cell 10:362–369PubMedGoogle Scholar
  386. Wang YX, Dumont NA, Rudnicki MA (2014) Muscle stem cells at a glance. J Cell Sci 127:4543–4548PubMedPubMedCentralGoogle Scholar
  387. Wang L, Yi F, Fu L et al (2017a) CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 8:365–378PubMedPubMedCentralGoogle Scholar
  388. Wang Y, Yu A, Yu FX (2017b) The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 8:349–359PubMedPubMedCentralGoogle Scholar
  389. Weisfeldt ML, Zieman SJ (2007) Advances in the prevention and treatment of cardiovascular disease. Health Aff 26:25–37Google Scholar
  390. Weiss S, Dunne C, Hewson J et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609PubMedPubMedCentralGoogle Scholar
  391. Weissman IL (2004) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168Google Scholar
  392. Wells JM, Melton DA (1999) Vertebrate endoderm development. Annu Rev Cell Dev Biol 15:393–410PubMedGoogle Scholar
  393. Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedGoogle Scholar
  394. Wetts R, Herrup K (1982) Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death. Brain Res 250:358–362PubMedGoogle Scholar
  395. Wetts R, Herrup K (1983) Direct correlation between Purkinje and granule cell number in the cerebella of lurcher chimeras and wild–type mice. Dev Brain Res 10:41–44Google Scholar
  396. Wise CJ, Watt DJ, Jones GE (1996) Conversion of dermal fibroblasts to a myogenic lineage is induced by a soluble factor derived from myoblasts. J Cell Biochem 61:363–374PubMedGoogle Scholar
  397. Wolpert L (1968) The French Flag problem: a contribution to the discussion on pattern development and regulation. In: Waddington CH (ed) Towards a theoretical biology. Edinburgh University Press, Edinburgh, pp 125–133Google Scholar
  398. Wong AH, Van Tol HH (2003) Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27:269–306PubMedGoogle Scholar
  399. Woolf CJ, Salte M (2000) Neuronal plasticity: increasing the gain of pain. Science 288:1765–1768PubMedGoogle Scholar
  400. Wu S, Li K, Yan Y et al (2013) Intranasal delivery of neural stem cells: a CNS-specific, non-invasive cell-based therapy for experimental autoimmune encephalomyelitis. J Clin Cell Immunol 4.  https://doi.org/10.4172/2155-9899.1000142
  401. Yaffe D (1968) Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A 61:477–483PubMedPubMedCentralGoogle Scholar
  402. Yao H, Gao M, Ma J et al (2015) Transdifferentiation-induced neural stem cells promote recovery of middle cerebral artery stroke rats. PLoS One 10:e0137211.  https://doi.org/10.1371/journal.pone.0137211CrossRefPubMedPubMedCentralGoogle Scholar
  403. Ye JH, Houle JD (1997) Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 143:70–81PubMedGoogle Scholar
  404. Younger DS (2004) Vasculitis of the nervous system. Curr Opin Neurol 17:317–336PubMedGoogle Scholar
  405. Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–828PubMedPubMedCentralGoogle Scholar
  406. Yun K, Wold B (1996) Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 8:877–889PubMedGoogle Scholar
  407. Yuyama K, Sun H, Usuki S et al (2015) A potential function for neuronal exosomes: sequestering intracerebral amyloid-β peptide. FEBS Lett 589:84–88PubMedGoogle Scholar
  408. Zelentsova K, Talmi Z, Abboud-Jarrous G et al (2017) Protein S regulates neural stem cell quiescence and neurogenesis. Stem Cells 35:679–693PubMedGoogle Scholar
  409. Zett UK, Stuve O, Patejdl R (2012) Immune-mediated CNS diseases: a review on nosological classification and clinical features. Autoimmun Rev 11:167–173Google Scholar
  410. Zhang Y, Zhu Y, Li Y et al (2015) Long-term engraftment of myogenic progenitors from adipose-derived stem cells and muscle regeneration in dystrophic mice. Hum Mol Genet 24:6029–6040PubMedGoogle Scholar
  411. Zhou JY, Zhang Z, Qian GS (2016) Mesenchymal stem cells to treat diabetic neuropathy: a long and strenuous way from bench to the clinic. Cell Death Discov 2:16055.  https://doi.org/10.1038/cddiscovery.2016.55CrossRefPubMedPubMedCentralGoogle Scholar
  412. Zueter AM, Zaiter A (2015) Infectious meningitis. Clin Microbiol Newsl 37:43–51Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Satish Sasikumar
    • 1
  • Ashima Bhan
    • 1
  • T. K. Rajendra
    • 1
  1. 1.Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneIndia

Personalised recommendations