Advertisement

Monitoring of Keratoconus Progression

  • David Smadja
  • Mark Krauthammer
Chapter

Abstract

The monitoring of ectatic diseases over time (keratoconus and post-LASIK ectasia) is a crucial issue since its progression naturally leads to a loss of vision that could be halted otherwise by available treatments if appropriately recognized at early stages of the progression (Wollensak et al., Am J Ophthalmol 135:620–627, 2003; Bedi et al., J Refract Surg 28(6):392–396, 2012). Although some variables have been suggested for monitoring keratoconus (KC) progression (Kanellopoulos and Asimellis, Clin Ophthalmol 7:1539–1548, 2013; Brown et al., Eye Contact Lens 40(6):331–338, 2014; Belin, Eye Contact Lens 40(6):326–330, 2014), to date, there is still no consensus on the most appropriate clinical, morphological or biomechanical parameter to track, in order to closely monitor the disease and detect the earliest manifestation of progression. This chapter, therefore, aims to summarize and provide an update on the most recent guideline for monitoring ectatic disease.

Keywords

Progression Monitoring Keratoconus Corneal ectasia Posterior cornea Coma Corneal asymmetry Topography Tomography 

References

  1. 1.
    Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.CrossRefGoogle Scholar
  2. 2.
    Bedi R, Touboul D, Pinsard L, Colin J. Refractive and topographic stability of Intacs in eyes with progressive keratoconus: five-year follow-up. J Refract Surg. 2012;28(6):392–6.CrossRefGoogle Scholar
  3. 3.
    Kanellopoulos AJ, Asimellis G. Revisiting keratoconus diagnosis and progression classification based on evaluation of corneal asymmetry indices, derived from scheimpflug imaging in keratoconic and suspect cases. Clin Ophthalmol. 2013;7:1539–48.CrossRefGoogle Scholar
  4. 4.
    Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg. 2008;34(5):796–801.CrossRefGoogle Scholar
  5. 5.
    Vinciguerra P, Albè E, Trazza S, Seiler T, Epstein D. Intraoperative and postoperative effects of corneal collagen cross-linking on progressive keratoconus. Arch Ophthalmol. 2009;127(10):1258–65.CrossRefGoogle Scholar
  6. 6.
    Hersh PS, Greenstein SA, Fry KL. Corneal collagen crosslinking for keratoconus and corneal ectasia: one year results. J Cataract Refract Surg. 2011;37(1):149–60.CrossRefGoogle Scholar
  7. 7.
    Choi JA, Kim MS. Progression of keratoconus by longitudinal assessment with corneal topography. Invest Ophthalmol Vis Sci. 2012;53(2):927–35.CrossRefGoogle Scholar
  8. 8.
    O’Brart DP, Chan E, Samaras K, Patel P, Shah SP. A randomised, prospective study to investigate the efficacy of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linkage to halt the progression of keratoconus. Br J Ophthalmol. 2011;95(11):1519–24.Google Scholar
  9. 9.
    Wittig-Silva C, Whiting M, Lamoureux E, Lindsay RG, Sullivan LJ. Snibson GR. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg. 2008;24(7):S720–5.Google Scholar
  10. 10.
    Chatzis N, Hafezi F. Progression of keratoconus and efficacy of pediatric [corrected] corneal collagen crosslinking in children and adolescents. J Refract Surg. 2012;28(11):753–8.CrossRefGoogle Scholar
  11. 11.
    Hashemi H, Seyedian MA, Miraftab M, Fotouhi A, Asgari S. Corneal collagen cross-linking with riboflavin and ultraviolet a irradiation for keratoconus: long-term results. Ophthalmology. 2013;120(8):1515–20.CrossRefGoogle Scholar
  12. 12.
    Mazzotta C, Traversi C, Paradiso AL, Latronico ME, Rechichi M. Pulsed light accelerated crosslinking versus continuous light accelerated crosslinking: one-year results. J Ophthalmol. 2014;2014:604–731.CrossRefGoogle Scholar
  13. 13.
    Stojanovic A, Zhou W, Utheim TP. Corneal collagen cross-linking with and without epithelial removal: a contralateral study with 0.5% hypotonic riboflavin solution. Biomed Res Int. 2014;2014:6193–8.CrossRefGoogle Scholar
  14. 14.
    Shetty R, Pahuja NK, Nuijts RM, Ajani A, Jayadev C, Sharma C, Nagaraja H. Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am J Ophthalmol. 2015;160(2):243–9.CrossRefGoogle Scholar
  15. 15.
    Poli M, Lefevre A, Auxenfans C, Burillon C. Corneal collagen cross-linking for the treatment of progressive corneal ectasia: 6-Year prospective outcome in a French Population. Am J Ophthalmol. 2015;160(4):654–62.CrossRefGoogle Scholar
  16. 16.
    Godefrooij DA, Soeters N, Imhof SM, Wisse RP. Corneal cross-linking for pediatric keratoconus: long-term results. Cornea. 2016;35(7):954–8.Google Scholar
  17. 17.
    Gomes J, Rapuano C, Belin MW, Ambròsio RJ. Disease G of panelist for the global DP of K and E. Global consensus on keratoconus diagnosis. Cornea. 2015;34(12):38–9.CrossRefGoogle Scholar
  18. 18.
    Amsler M. Keratocone classique et keratocone fruste, arguments unitaires. Oftalmologica. 1946;111:96–101.CrossRefGoogle Scholar
  19. 19.
    Alió JL, Shabayek MH. Corneal higher order aberrations: a method to grade keratoconus. J Refract Surg. 2006;22(6):539–46.PubMedGoogle Scholar
  20. 20.
    Alió JL, Piñero DP, Alesón A, et al. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. J Cataract Refract Surg. 2011;37(3):552–68.CrossRefGoogle Scholar
  21. 21.
    Santhiago MR, Smadja D, Gomes BAF, et al. Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol. 2014;158(1):87–95.CrossRefGoogle Scholar
  22. 22.
    Galvis V, Sherwin T, Tello A, Merayo-Lloves J, Barrera R, Acera A. Keratoconus: an inflammatory disorder? Eye (Lond). 2015;29(7):843–59.CrossRefGoogle Scholar
  23. 23.
    Shetty R, Sureka S, Kusumgar P, Sethu S, Sainani K. Allergen-specific exposure associated with high immunoglobulin E and eye rubbing predisposes to progression of keratoconus. Indian J Ophthalmol. 2017;65(5):399–402.CrossRefGoogle Scholar
  24. 24.
    Nielsen K, Hjortdal JØ, Pihlmann M, Corydon T. Update on keratoconus genetics. Acta Ophthalmol. 2013;91(2):106–13.CrossRefGoogle Scholar
  25. 25.
    Tuft SJ, Hashemi H, George S, Frazer D, Willoughby C, Liskova P. Keratoconus in 18 pairs of twins. Acta Ophthalmol. 2012;90(6):482–6.CrossRefGoogle Scholar
  26. 26.
    Kymionis GD, Blazaki S, Tsoulnaras K, Giarmoukakis A, Grentzelos M, Tsilimbaris M. Corneal imaging abnormalities in familial keratoconus. J Refract Surg. 2017;33(1):62–3.CrossRefGoogle Scholar
  27. 27.
    Zadnik K, Barr JT, Edrington TB, et al. Baseline findings in the collaborative longitudinal evaluation of keratoconus (CLEK) study. Invest Ophthalmol Vis Sci. 1998;39:2537–46.PubMedGoogle Scholar
  28. 28.
    Hamilton A, Wong S, Carley F, Chaudhry N, Biswas S. Tomographic indices as possible risk factors for progression in pediatric keratoconus. J AAPOS. 2016;20(6):523–6.CrossRefGoogle Scholar
  29. 29.
    Tellouck J, Touboul D, Santhiago MR, Tellouck L, Paya C, Smadja D. Evolution of different corneal parameters in progressive keratoconus. Cornea. 2016;35(6):807–13.CrossRefGoogle Scholar
  30. 30.
    Fujimoto H, Maeda N, Shintani A, et al. Quantitative evaluation of the natural progression of keratoconus using three-dimensional optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57(9):169–75.CrossRefGoogle Scholar
  31. 31.
    Bligihan K, Hondur A, Sul S, Ozturk S. Pregnancy-induced progression of keratoconus. Cornea. 2011;30(9):991–4.CrossRefGoogle Scholar
  32. 32.
    Smadja D, Touboul D, Cohen A, et al. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013;156(2):237–46.CrossRefGoogle Scholar
  33. 33.
    Saad A, Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci. 2010;51(11):5546–55.CrossRefGoogle Scholar
  34. 34.
    Ambrósio R, Caiado ALC, P F, et al. Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. J Refract Surg. 2011;27(10):753–8.CrossRefGoogle Scholar
  35. 35.
    Bühren J, Kook D, Yoon G, Kohnen T. Detection of subclinical keratoconus by using corneal anterior and posterior surface aberrations and thickness spatial profiles. Invest Ophthalmol Vis Sci. 2010;51(7):3424–32.  https://doi.org/10.1167/iovs.09-4960.CrossRefPubMedGoogle Scholar
  36. 36.
    Smadja D, Santhiago MR, Mello GR, Krueger RR, Colin J, Touboul D. Influence of the reference surface shape for discriminating between normal corneas, subclinical keratoconus and keratoconus. J Refract Surg. 2013;29(4):274–81.CrossRefGoogle Scholar
  37. 37.
    Khachikian SS, Belin MW. Posterior elevation in keratoconus. Ophthalmology. 2009;116(4):816–7.CrossRefGoogle Scholar
  38. 38.
    Brown SE, Simmasalam R, Antonova N, Gadaria N, Asbell PA. Progression in keratoconus and the effect of corneal cross-linking on progression. Eye Contact Lens. 2014;40(6):331–8.CrossRefGoogle Scholar
  39. 39.
    Belin MW. Tomographic parameters for the detection of keratoconus: suggestions for screening and treatment parameters. Eye Contact Lens. 2014;40(6):326–30.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Smadja
    • 1
  • Mark Krauthammer
    • 2
  1. 1.Anterior Segment and Refractive Surgery Unit, Ophthalmology DepartmentShaare Zedek Medical CenterJerusalemIsrael
  2. 2.Ophthalmology DepartmentTel Aviv Sourasky Medical CenterTel AvivIsrael

Personalised recommendations