Advertisement

Chronic Ocular Inflammation and Keratoconus

  • Igor Kaiserman
  • Sara Sella
Chapter

Abstract

Keratoconus (KC) has conventionally been held to be a non-inflammatory progressive thinning of the cornea affected by genetic and environmental factors leading to irregular astigmatism and impairment of visual function. KC is know to be associated with atopy, vernal keratoconjunctivitis, retinitis pigmentosa, eye rubbing, Down syndrome, and connective tissue disorders.

In recent years, evidences are amounting that inflammatory factors might play a role in KC pathogenesis and progression. Tears from patients with the disease have been found to have elevated levels of pro-inflammatory cytokines such as: interleukin(IL)-6, tumor necrosis factor -α and matrix metalloproteinase-9, as well as accumulation of cytotoxic by products from the nitric oxide and lipid peroxidation pathways, abnormal antioxidant enzymes, and increased levels of mitochondrial DNA damage. Increased binding of IL-1 by corneal fibroblasts might also suggest a role for inflammation in the onset or progression of keratoconus.

Because dry eyes in general and blepharitis in particular were also found to be associated with KC, the potential relationship between KC and dry eye is under investigation. Chronic high levels of pro-inflammatory factors or intense eye rubbing due to itching might be the missing link between KC and blepharitis. Treating blepharitis with eyelid heating and iatrogenic ocular massage might also exacerbate KC.

Although RGP contact lenses are a must in many KC patients the lenses might also have a negative impact on the disease by inducing a state of chronic ocular surface inflammation and dry eyes or by mechanically rubbing the cornea and inducing repeated micro-trauma.

Keywords

Keratoconus Ocular inflammation Dry eyes Blepharitis Matrix metalloproteinases Eye rubbing 

References

  1. 1.
    Romero-Jimenez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye. 2010;33(4):157–66; quiz 205.CrossRefGoogle Scholar
  2. 2.
    Wisse RP, Kuiper JJ, Gans R, Imhof S, Radstake TR, Van der Lelij A. Cytokine expression in keratoconus and its corneal microenvironment: a systematic review. Ocul Surf. 2015;13(4):272–83.CrossRefGoogle Scholar
  3. 3.
    Toprak I, Kucukatay V, Yildirim C, Kilic-Toprak E, Kilic-Erkek O. Increased systemic oxidative stress in patients with keratoconus. Eye (Lond). 2014;28(3):285–9.CrossRefGoogle Scholar
  4. 4.
    Bawazeer AM, Hodge WG, Lorimer B. Atopy and keratoconus: a multivariate analysis. Br J Ophthalmol. 2000;84(8):834–6.CrossRefGoogle Scholar
  5. 5.
    Wachtmeister L, Ingemansson SO, Moller E. Atopy and HLA antigens in patients with keratoconus. Acta Ophthalmol (Copenh). 1982;60(1):113–22.CrossRefGoogle Scholar
  6. 6.
    Jafri B, Lichter H, Stulting RD. Asymmetric keratoconus attributed to eye rubbing. Cornea. 2004;23(6):560–4.CrossRefGoogle Scholar
  7. 7.
    Liu Z, Pflugfelder SC. The effects of long-term contact lens wear on corneal thickness, curvature, and surface regularity. Ophthalmology. 2000;107(1):105–10.CrossRefGoogle Scholar
  8. 8.
    Moon JW, Shin KC, Lee HJ, Wee WR, Lee JH, Kim MK. The effect of contact lens wear on the ocular surface changes in keratoconus. Eye Contact Lens. 2006;32(2):96–101.CrossRefGoogle Scholar
  9. 9.
    Shetty R, Deshmukh R, Ghosh A, Sethu S, Jayadev C. Altered tear inflammatory profile in Indian keratoconus patients – the 2015 Col Rangachari Award paper. Indian J Ophthalmol. 2017;65(11):1105–8.CrossRefGoogle Scholar
  10. 10.
    Fabre EJ, Bureau J, Pouliquen Y, Lorans G. Binding sites for human interleukin 1 alpha, gamma interferon and tumor necrosis factor on cultured fibroblasts of normal cornea and keratoconus. Curr Eye Res. 1991;10(7):585–92.CrossRefGoogle Scholar
  11. 11.
    Balasubramanian SA, Mohan S, Pye DC, Willcox MD. Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus. Acta Ophthalmol. 2012;90(4):e303–9.CrossRefGoogle Scholar
  12. 12.
    Lema I, Sobrino T, Duran JA, Brea D, Diez-Feijoo E. Subclinical keratoconus and inflammatory molecules from tears. Br J Ophthalmol. 2009;93(6):820–4.CrossRefGoogle Scholar
  13. 13.
    Liu C, Feng P, Li X, Song J, Chen W. Expression of MMP-2, MT1-MMP, and TIMP-2 by cultured rabbit corneal fibroblasts under mechanical stretch. Exp Biol Med. 2014;239:907–12.CrossRefGoogle Scholar
  14. 14.
    Smith VA, Matthews F, Majid MA, Cook S. Keratoconus: matrix metalloproteinase-2 activation and TIMP modulation. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2006;1762:431–9.CrossRefGoogle Scholar
  15. 15.
    Pannebaker C, Chandler HL, Nichols JJ. Tear proteomics in keratoconus. Mol Vis. 2010;16:1949–57.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lema I, Durán JA, Ruiz C, Díez-Feijoo E, Acera A, Merayo J. Inflammatory response to contact lenses in patients with keratoconus compared with myopic subjects. Cornea. 2008;27(7):758–63.CrossRefGoogle Scholar
  17. 17.
    Lema I, Durán JA. Inflammatory molecules in the tears of patients with keratoconus. Ophthalmology. 2005;112(4):654–9.CrossRefGoogle Scholar
  18. 18.
    Kolozsvári BL, Petrovski G, Gogolák P, Rajnavölgyi É, Tóth F, Berta A, Fodor M. Association between mediators in the tear fluid and the severity of keratoconus. Ophthalmic Res. 2014;51(1):46–51.CrossRefGoogle Scholar
  19. 19.
    Matthews FJ, Cook SD, Majid MA, Dick AD, Smith VA. Changes in the balance of the tissue inhibitor of matrix metalloproteinases (TIMPs)-1 and -3 may promote keratocyte apoptosis in keratoconus. Exp Eye Res. 2007;84(6):1125–34.CrossRefGoogle Scholar
  20. 20.
    Fabre E, Bureau J, Pouliquen Y, Lorans G. Binding sites for human interleukin 1 α, gamma interferon and tumor necrosis factor on cultured fibroblasts of normal cornea and keratoconus. Curr Eye Res. 1991;10(7):585–92.CrossRefGoogle Scholar
  21. 21.
    Collier SA, Madigan MC, Penfold PL. Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) and MMP-2 in normal and keratoconus corneas. Curr Eye Res. 2000;21:662–8.CrossRefGoogle Scholar
  22. 22.
    Afonso AA, Sobrin L, Monroy DC, Selzer M, Lokeshwar B, Pflugfelder SC. Tear fluid gelatinase B activity correlates with IL-1α concentration and fluorescein clearance in ocular rosacea. Invest Ophthalmol Vis Sci. 1999;40(11):2506–12.PubMedGoogle Scholar
  23. 23.
    Mostovoy D, Vinker S, Mimouni M, Goldich Y, Levartovsky S, Kaiserman I. The association of keratoconus with blepharitis. Clin Exp Optom. 2018;101(3):339–44.CrossRefGoogle Scholar
  24. 24.
    Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003–18.CrossRefGoogle Scholar
  25. 25.
    Pouliquen Y, Bureau J, Mirshahi M, Mirshahi S, Assouline M, Lorens G. Keratoconus and inflammatory processes. Bull Soc Belge Ophtalmol. 1995;262:25–8.Google Scholar
  26. 26.
    Galvis V, Sherwin T, Tello A, Merayo J, Barrera R, Acera A. Keratoconus: an inflammatory disorder? Eye. 2015;29(7):843–59.CrossRefGoogle Scholar
  27. 27.
    Wilson SE, HE YG, Weng J, Li Q, McDOWALL AW, Vital M, Chwang EL. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res. 1996;62(4):325–38.CrossRefGoogle Scholar
  28. 28.
    Im E, Kazlauskas A. The role of cathepsins in ocular physiology and pathology. Exp Eye Res. 2007;84:383–8.CrossRefGoogle Scholar
  29. 29.
    Regmi SC, Samsom ML, Heynen M, et al. Degradation of proteoglycan 4/lubricin by cathepsin S: potential mechanism for diminished ocular surface lubrication in Sjögren’s syndrome. Exp Eye Res. 2017;161:1–9.CrossRefGoogle Scholar
  30. 30.
    McMonnies CW. Mechanisms of rubbing-related corneal trauma in keratoconus. Cornea. 2009;28(6):607–15.CrossRefGoogle Scholar
  31. 31.
    Naoumidi TL, Pallikaris IG, Naoumidi II, Astyrakakis NI. Conductive keratoplasty: histological study of human corneas. Am J Ophthalmol. 2005;140(6):984–92.CrossRefGoogle Scholar
  32. 32.
    Greiner JV, Peace DG, Baird RS, Allansmith MR. Effects of eye rubbing on the conjunctiva as a model of ocular inflammation. Am J Ophthalmol. 1985;100(1):45–50.CrossRefGoogle Scholar
  33. 33.
    Greiner JV, Leahy CD, Welter DA, Hearn SL, Weidman TA, Korb DR. Histopathology of the ocular surface after eye rubbing. Cornea. 1997;16:327–32.CrossRefGoogle Scholar
  34. 34.
    Kenney MC, Brown DJ. The cascade hypothesis of keratoconus. Contact Lens Anterior Eye. 2003;26(3):139–46.CrossRefGoogle Scholar
  35. 35.
    Kenney MC, Chwa M, Atilano SR, Tran A, Carballo M, Saghizadeh M, Vasiliou V, Adachi W, Brown DJ. Increased levels of catalase and cathepsin V/L2 but decreased TIMP-1 in keratoconus corneas: evidence that oxidative stress plays a role in this disorder. Invest Ophthalmol Vis Sci. 2005;46(3):823–32.CrossRefGoogle Scholar
  36. 36.
    Kaya V, Karakaya M, Utine CA, et al. Evaluation of the corneal topographic characteristics of keratoconus with orbscan II in patients with and without atopy. Cornea. 2007;26:945–8.CrossRefGoogle Scholar
  37. 37.
    Shajari M, Eberhardt E, Müller M, Al Khateeb G, Friderich S, Remy M, Kohnen T. Effects of atopic syndrome on keratoconus. Cornea. 2016;35(11):1416–20.CrossRefGoogle Scholar
  38. 38.
    Wilson SE, Stulting RD. Agreement of physician treatment practices with the international task force guidelines for diagnosis and treatment of dry eye disease. Cornea. 2007;26(3):284–9.CrossRefGoogle Scholar
  39. 39.
    Lam H, Bleiden L, De Paiva CS, Farley W, Stern ME, Pflugfelder SC. Tear cytokine profiles in dysfunctional tear syndrome. Am J Ophthalmol. 2009;147(2):198–205.CrossRefGoogle Scholar
  40. 40.
    Boehm N, Riechardt AI, Wiegand M, Pfeiffer N, Grus FH. Proinflammatory cytokine profiling of tears from dry eye patients by means of antibody microarrays. Invest Ophthalmol Vis Sci. 2011;52(10):7725–30.CrossRefGoogle Scholar
  41. 41.
    Sambursky R, Davitt WF III, Friedberg M, Tauber S. Prospective, multicenter, clinical evaluation of point-of-care matrix metalloproteinase-9 test for confirming dry eye disease. Cornea. 2014;33(8):812–8.CrossRefGoogle Scholar
  42. 42.
    Corrales RM, Stern ME, De Paiva CS, Welch J, Li DQ, Pflugfelder SC. Desiccating stress stimulates expression of matrix metalloproteinases by the corneal epithelium. Invest Ophthalmol Vis Sci. 2006;47(8):3293–302.CrossRefGoogle Scholar
  43. 43.
    Massingale ML, Li X, Vallabhajosyula M, Chen D, Wei Y, Asbell PA. Analysis of inflammatory cytokines in the tears of dry eye patients. Cornea. 2009;28(9):1023–7.CrossRefGoogle Scholar
  44. 44.
    De Paiva CS, Corrales RM, Villarreal AL, Farley W, Li DQ, Stern ME, Pflugfelder SC. Apical corneal barrier disruption in experimental murine dry eye is abrogated by methylprednisolone and doxycycline. Invest Ophthalmol Vis Sci. 2006;47(7):2847–56.CrossRefGoogle Scholar
  45. 45.
    Chotikavanich S, de Paiva CS, Chen JJ, Bian F, Farley WJ, Pflugfelder SC. Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci. 2009;50(7):3203–9.CrossRefGoogle Scholar
  46. 46.
    Li DQ, Lokeshwar BL, Solomon A, Monroy D, Ji Z, Pflugfelder SC. Regulation of MMP-9 production by human corneal epithelial cells. Exp Eye Res. 2001;73(4):449–59.CrossRefGoogle Scholar
  47. 47.
    Pflugfelder SC, de Paiva CS, Tong L, Luo L, Stern ME, Li DQ. Stress-activated protein kinase signaling pathways in dry eye and ocular surface disease. Ocul Surf. 2005;3(4):S–154.CrossRefGoogle Scholar
  48. 48.
    Carracedo G, Recchioni A, Alejandre-Alba N, et al. Signs and symptoms of dry eye in keratoconus patients: a pilot study. Curr Eye Res. 2015;40:1088–94.CrossRefGoogle Scholar
  49. 49.
    McMonnies CW, Alharbi A, Boneham GC. Epithelial responses to rubbing-related mechanical forces. Cornea. 2010;29(11):1223–31.CrossRefGoogle Scholar
  50. 50.
    Wilson SE, Mohan RR, Ambrosio R, Mohan RR. Corneal injury: a relatively pure model of stromal-epithelial interactions in wound healing. Wound Healing:Methods Protocol. 2003;78:67–81.CrossRefGoogle Scholar
  51. 51.
    Nagasaki T, Zhao J. Centripetal movement of corneal epithelial cells in the normal adult mouse. Invest Ophthalmol Vis Sci. 2003;44:558–66.CrossRefGoogle Scholar
  52. 52.
    Gesteira TF, Coulson-Thomas VJ, Ogata FT, et al. A novel approach for the characterisation of proteoglycans and biosynthetic enzymes in a snail model. Biochim Biophys Acta (BBA)-Proteins Proteomics. 2011;1814:1862–9.CrossRefGoogle Scholar
  53. 53.
    Coulson-Thomas VJ, Chang S-H, Yeh L-K, et al. Loss of corneal epithelial heparan sulfate leads to corneal degeneration and impaired wound Healing role of HS in the corneal epitheliam. Invest Ophthalmol Vis Sci. 2015;56:3004–14.CrossRefGoogle Scholar
  54. 54.
    Carracedo G, Gonzalez-Meijome JM, Martin-Gil A, Carballo J, Pintor J. The influence of rigid gas permeable lens wear on the concentrations of dinucleotides in tears and the effect on dry eye signs and symptoms in keratoconus. Cont Lens Anterior Eye. 2016;39:375–9.CrossRefGoogle Scholar
  55. 55.
    Chwa M, Atilano SR, Hertzog D, Zheng H, Langberg J, Kim DW, Kenney MC. Hypersensitive response to oxidative stress in keratoconus corneal fibroblasts. Invest Ophthalmol Vis Sci. 2008;49(10):4361–9.CrossRefGoogle Scholar
  56. 56.
    Pastori V, Tavazzi S, Lecchi M. Lactoferrin-loaded contact lenses: eye protection against oxidative stress. Cornea. 2015;34(6):693–7.CrossRefGoogle Scholar
  57. 57.
    McKay TB, et al. Acute hypoxia influences collagen and matrix metalloproteinase expression by human keratoconus cells in vitro. Ljubimov AV, editor. PLoS One. 2017;12(4):e0176017. PMC Web 24 Jan. 2018.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Igor Kaiserman
    • 1
  • Sara Sella
    • 2
  1. 1.Department of Ophthalmology, Barzilai University Medical Center, Ashkelon, Faculty of Health ScienceBen Gurion University of the NagevBeer-ShebaIsrael
  2. 2.Department of OphthalmologyMeir Medical CenterKefar-SabaIsrael

Personalised recommendations