Advertisement

Alternative Corneal Cross-Linking Agents

  • Arie L. Marcovich
Chapter

Abstract

Corneal cross-linking can be performed by chromophores that produce reactive oxygen radicals when exposed to illumination at a specific wavelength or chemically without light application. The clinically applied and most widely studied is riboflavin that is activated by UVA light. Other chromophores under investigation are Rose Bengal and Eosin Y which are excited by green light and WST-D that is activated by near infrared light. Agents that induce cross-linking chemically are Genipin and Galacorin.

Keywords

Corneal stiffening Cross-linking Ultraviolet A Green light Near infrared light 

References

  1. 1.
    Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA-riboflavin cross-linking of the cornea. Cornea. 2007;26(4):385–9.CrossRefGoogle Scholar
  2. 2.
    Wollensak G, Spoerl E, Wilsch M, Seiler T. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg. 2003;29(9):1786–90.CrossRefGoogle Scholar
  3. 3.
    Bagga B, Pahuja S, Murthy S, Sangwan VS. Endothelial failure after collagen cross-linking with riboflavin and UV-A: case report with literature review. Cornea. 2012;31(10):1197–200.CrossRefGoogle Scholar
  4. 4.
    Sharma A, Nottage JM, Mirchia K, Sharma R, Mohan K, Nirankari VS. Persistent corneal edema after collagen cross-linking for keratoconus. Am J Ophthalmol. 2012;154:922–6.CrossRefGoogle Scholar
  5. 5.
    Hafezi F. Limitation of collagen cross-linking with hypoosmolar riboflavin solution: failure in an extremely thin cornea. Cornea. 2011;30:917–9.CrossRefGoogle Scholar
  6. 6.
    Cherfan D, Verter EE, Melki S, Gisel TE, Doyle FJ Jr, Scarcelli G, et al. Collagen cross-linking using rose bengal and green light to increase corneal stiffness. Invest Ophthalmol Vis Sci. 2013;54:3426–33.CrossRefGoogle Scholar
  7. 7.
    Bekesi N, Kochevar IE, Marcos S. Corneal biomechanical response following collagen cross-linking with rose bengal-green light and ribo avin-UVA. Invest Ophthalmol Vis Sci. 2016;57:992–1001.CrossRefGoogle Scholar
  8. 8.
    Zhu H, Alt C, Webb RH, Melki S, Kochevar IE. Corneal crosslinking with Rose Bengal and green light: efficacy and safety evaluation. Cornea. 2016;35:1234–41.CrossRefGoogle Scholar
  9. 9.
    Kochevar IE, Redmond RW. Photosensitized production of singlet oxygen. Methods Enzymol. 2000;319:20–8.CrossRefGoogle Scholar
  10. 10.
    Fadlallah A, Zhu H, Arafat S, Kochevar I, Melki S, Ciolino JB. Corneal resistance to keratolysis after collagen crosslinking with rose bengal and green light. Invest Ophthalmol Vis Sci. 2016;57:6610–4.CrossRefGoogle Scholar
  11. 11.
    Schwartz DM, Mattson MS, Kornfield JA, Maloney RK, Grubbs RH, inventors. Photochemical therapy to affect mechanical and/or chemical properties of body tissue. US patent 20080114283. May 15, 2008.Google Scholar
  12. 12.
    Huynh J. Factors governing photodynamic cross-linking of ocular coat. Dissertation (Ph.D.), California Institute of Technology; 2011. http://resolver.caltech.edu/CaltechTHESIS:05202011-143758537.
  13. 13.
    Marcovich AL, Brandis A, Daphna O, et al. Stiffening of rabbit corneas by the bacteriochlorophyll derivative WST11 using near infrared light. Invest Ophthalmol Vis Sci. 2012;53:6378–88.CrossRefGoogle Scholar
  14. 14.
    Brekelmans J, Goz A, Dickman MM, Brandis A, Sui X, Wagner HD, Nuijts RM, Scherz A, Marcovich AL. Corneal stiffening by a bacteriochlorophyll derivative with dextran and near-infrared light: effect of shortening irradiation time up to 1 minute. Cornea. 2017;36:1395–401.CrossRefGoogle Scholar
  15. 15.
    Brekelmans J, Goz A, Dickman MM, Brandis A, Sui X, Wagner HD, Nuijts RM, Scherz A, Marcovich AL. Long-term biomechanical and histological results of WST-D/NIR corneal stiffening in rabbits, up to 8 months follow-up. Invest Ophthalmol Vis Sci. 2017;58:4089–95.CrossRefGoogle Scholar
  16. 16.
    Avila MY, Navia JL. Effect of genipin collagen crosslinking on porcine corneas. J Cataract Refract Surg. 2010;36:659–64.CrossRefGoogle Scholar
  17. 17.
    Avila MY, Narvaez M, Castañeda JP. Effects of genipin corneal crosslinking in rabbit corneas. J Cataract Refract Surg. 2016;42:1073–7.CrossRefGoogle Scholar
  18. 18.
    Song W, Tang Y, Qiao J, Li H, Rong B, Yang S, Wu Y, Yan X. The comparative safety of genipin versus UVA-riboflavin crosslinking of rabbit corneas. Mol Vis. 2017;23:504–13.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Metzler KM, Roberts CJ, Mahmoud AM, Agarwal G, Liu J. Ex vivo transepithelial collagen cross-linking in porcine and human corneas using human decorin core protein. J Refract Surg. 2016;32:410–7.CrossRefGoogle Scholar
  20. 20.
    ICNIRP (International Commission on Non-ionizing Radiation Protection). Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 microM). International Commission on Non-Ionizing Radiation Protection. Health Phys. 1997;73:539–54. http://www.ncbi.nlm.nih.gov/pubmed/9287105Google Scholar
  21. 21.
    Lai J-Y. Biocompatibility of genipin and glutaraldehyde crosslinked chitosan materials in the anterior chamber of the eye. Int J Mol Sci. 2012;13:10970–85.CrossRefGoogle Scholar
  22. 22.
    Wang M, Corpuz CCC. Effects of scleral cross-linking using genipin on the process of form-deprivation myopia in the guinea pig: a randomized controlled experimental study. BMC Ophthalmol. 2015;15:89.CrossRefGoogle Scholar
  23. 23.
    DeVore DP, DeWoolfson BH, Glady GE, Hoopes PJ, Moodie KL, Roberts CJ. Decorin core protein for organizing and stabilizing stromal collagen structure. Poster presented at: 9th International Congress of Corneal Crosslinking; December 6–7, 2013; Dublin.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arie L. Marcovich
    • 1
    • 2
  1. 1.Department of OphthalmologyKaplan Medical CenterRehovotIsrael
  2. 2.Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations