Innovative Approaches in Delivery of Eye Care: Diabetic Retinopathy

  • Daniel Shu Wei Ting
  • Ecosse Lamoureux
  • Tien Yin WongEmail author
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Diabetes mellitus is one of the world’s major public health conditions, affecting 366 million in 2011 increasing to 552 million in 2030. Diabetic retinopathy (DR), a specific microvascular complication of diabetes, remains one of the leading causes for acquired vision loss worldwide in middle-aged working populations. While much of the advances and research have been focused on tertiary level care of patients with DR (e.g., laser, intraocular application of anti-vascular endothelial growth factor (anti-VEGF) and vitreoretinal surgery), solutions to sustainable prevention of vision loss involve developing innovative ways to optimize clinically and economically effective DR care in primary and secondary settings, both in resource-rich and resource-poor countries worldwide. Retinal photography, with additional use of ophthalmoscopy for selected cases, remains the most effective DR screening strategy in both resource-rich and resource-poor settings. Raising public awareness, improving access to the eye care services, and training more primary eye care workers are cost-effective measures to enable the success of a DR screening program in the resource-poor countries. Early detection and DR prevention remain public health imperatives. More focus, therefore, should be directed to the prevention of diabetes by raising public health awareness on the importance of a healthy lifestyle, nutrition, and physical activity. For those with diabetes, it is important for primary care physicians to optimize the modifiable risk factors, including the glycemic index, blood pressure, lipid control, and body weight control, to prevent development and progression of DR and other diabetes-related micro- and macrovascular complications.


Diabetic retinopathy Screening Primary and secondary eye care Innovative approaches Diabetes 


  1. 1.
    Moss SE, Klein R, Klein BE. The 14-year incidence of visual loss in a diabetic population. Ophthalmology. 1998;105(6):998–1003.PubMedCrossRefGoogle Scholar
  2. 2.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Klein BE. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol. 2007;14(4):179–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ferris FL 3rd. How effective are treatments for diabetic retinopathy? JAMA. 1993;269(10):1290–1.PubMedCrossRefGoogle Scholar
  7. 7.
    Rohan T, Frost C, Wald N. Prevention of blindness by screening for diabetic retinopathy: a quantitative assessment. BMJ. 1989;299:1198–201.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs – an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5 Suppl):786–806.Google Scholar
  9. 9.
    James M, Turner DA, Broadbent DM, Vora J, Harding SP. Cost effectiveness analysis of screening for sight threatening diabetic eye disease. BMJ. 2000;320(7250):1627–31.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jones CD, Greenwood RH, Misra A, Bachmann MO. Incidence and progression of diabetic retinopathy during 17 years of a population-based screening program in England. Diabetes Care. 2012;35(3):592–6.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cikamatana L, Mitchell P, Rochtchina E, Foran S, Wang JJ. Five-year incidence and progression of diabetic retinopathy in a defined older population: the Blue Mountains Eye Study. Eye (Lond). 2007;21(4):465–71.CrossRefGoogle Scholar
  12. 12.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.Google Scholar
  13. 13.
    Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44(2):156–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007;298(8):902–16.PubMedCrossRefGoogle Scholar
  15. 15.
    The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342(6):381–9.Google Scholar
  16. 16.
    Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology. 2009;116(3):497–503.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 2008;115(11):1859–68.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rema M, Srivastava BK, Anitha B, Deepa R, Mohan V. Association of serum lipids with diabetic retinopathy in urban South Indians – the Chennai Urban Rural Epidemiology Study (CURES) Eye Study – 2. Diabet Med J Br Diabet Assoc. 2006;23(9):1029–36.CrossRefGoogle Scholar
  19. 19.
    Lyons TJ, Jenkins AJ, Zheng D, et al. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest Ophthalmol Vis Sci. 2004;45(3):910–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Raman R, Rani PK, Kulothungan V, Rachepalle SR, Kumaramanickavel G, Sharma T. Influence of serum lipids on clinically significant versus nonclinically significant macular edema: SN-DREAMS report number 13. Ophthalmology. 2010;117(4):766–72.PubMedCrossRefGoogle Scholar
  21. 21.
    International Council of Ophthalmology. Diabetic eye care. ICO Guidelines for Diabetic Eye Care. 2014.
  22. 22.
    Hammond C, Shackleton J, Flanagan DW, Herrtage J, Wade J. Comparison between an ophthalmic optician and ophthalmologist in screening for diabetic retinopathy. Eye. 1996;10:107–12.PubMedCrossRefGoogle Scholar
  23. 23.
    Buxton M, Sculpher MJ, Ferguson BA, et al. Screening for treatable diabetic retinopathy: a comparison of different methods. Diabet Med. 1991;8:371–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Lienert R. Inter-observer comparisons of ophthalmoscopic assessment of diabetic retinopathy. Aust NZJ Ophthalmol. 1989;17:363–8.CrossRefGoogle Scholar
  25. 25.
    Hutchinson A, McIntosh A, Peters J, et al. Effectiveness of screening and monitoring tests for diabetic retinopathy – a systematic review. Diabet Med J Br Diabet Assoc. 2000;17(7):495–506.CrossRefGoogle Scholar
  26. 26.
    Scanlon PH, Malhotra R, Greenwood RH, et al. Comparison of two reference standards in validating two field mydriatic digital photography as a method of screening for diabetic retinopathy. Br J Ophthalmol. 2003;87(10):1258–63.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Murray R, Metcalf SM, Lewis PM, Mein JK, McAllister IL. Sustaining remote-area programs: retinal camera use by Aboriginal health workers and nurses in a Kimberley partnership. Med J Aust. 2005;182:520–3.PubMedGoogle Scholar
  28. 28.
    Olson JA, Strachan FM, Hipwell JH, et al. A comparative evaluation of digital imaging, retinal photography and optometrist examination in screening for diabetic retinopathy. Diabet Med J Br Diabet Assoc. 2003;20(7):528–34.CrossRefGoogle Scholar
  29. 29.
    Gibbins RL, Owens DR, Allen JC, Eastman L. Practical application of the European Field Guide in screening for diabetic retinopathy by using ophthalmoscopy and 35 mm retinal slides. Diabetologia. 1998;41(1):59–64.PubMedCrossRefGoogle Scholar
  30. 30.
    Ting DS, Tay-Kearney ML, Kanagasingam Y. Light and portable novel device for diabetic retinopathy screening. Clin Exp Ophthalmol. 2012;40(1):e40–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Pugh JA, Jacobson JM, Van Heuven WA, et al. Screening for diabetic retinopathy. The wide-angle retinal camera. Diabetes Care. 1993;16(6):889–95.PubMedCrossRefGoogle Scholar
  32. 32.
    Lin DY, Blumenkranz MS, Brothers RJ, Grosvenor DM. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. Am J Ophthalmol. 2002;134(2):204–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Ting DS, Tay-Kearney ML, Constable I, Lim L, Preen DB, Kanagasingam Y. Retinal video recording a new way to image and diagnose diabetic retinopathy. Ophthalmology. 2011;118(8):1588–93.PubMedCrossRefGoogle Scholar
  34. 34.
    National Institute for Clinical Excellence. Diabetic retinopathy – early management and screening. London: National Institute for Clinical Excellence; 2001.Google Scholar
  35. 35.
    Lachkar Y, Bouassida W. Drug-induced acute angle closure glaucoma. Curr Opin Ophthalmol. 2007;18(2):129–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Liew G, Mitchell P, Wang JJ, Wong TY. Fundoscopy: to dilate or not to dilate? BMJ. 2006;332:3.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Resnikoff S, Pascolini D, Etya'ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–51.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Danielsen R, Jonasson F, Helgason T. Prevalence of retinopathy and proteinuria in type 1 diabetics in Iceland. Acta Med Scand. 1982;212(5):277–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Backlund LB, Algvere PV, Rosenqvist U. New blindness in diabetes reduced by more than one-third in Stockholm County. Diabet Med J Br Diabet Assoc. 1997;14(9):732–40.CrossRefGoogle Scholar
  40. 40.
    Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open. 2014;4(2):e004015.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Arun CS, Ngugi N, Lovelock L, Taylor R. Effectiveness of screening in preventing blindness due to diabetic retinopathy. Diabet Med J Br Diabet Assoc. 2003;20(3):186–90.CrossRefGoogle Scholar
  42. 42.
    Bäcklund LB, Algvere PV, Rosenqvist U. New blindness in diabetes reduced by more than one-third in Stockholm County. Diabet Med. 1997;14:732–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Aspelund T, Thornorisdottir O, Olafsdottir E, et al. Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy. Diabetologia. 2011;54(10):2525–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Health Mo. MOH clinical guidance on diabetes mellitus. 2014. Accessed at 4th May 2016. URL:
  45. 45.
    National Health Service (NHS) Diabetic Eye Screening Programme and Population Screening Programmes. Diabetic eye screening: commission and provide. 2015. Accessed at 4th May 2016. URL:
  46. 46.
    Khandekar R. Screening and public health strategies for diabetic retinopathy in the Eastern Mediterranean region. Middle East Afr J Ophthalmol. 2012;19(2):178–84.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sharma S, Oliver-Fernandez A, Liu W, Buchholz P, Walt J. The impact of diabetic retinopathy on health-related quality of life. Curr Opin Ophthalmol. 2005;16(3):155–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Bursell SE, Cavallerano JD, Cavallerano AA, et al. Stereo nonmydriatic digital-video color retinal imaging compared with Early Treatment Diabetic Retinopathy Study seven standard field 35-mm stereo color photos for determining level of diabetic retinopathy. Ophthalmology. 2001;108(3):572–85.PubMedCrossRefGoogle Scholar
  49. 49.
    Conlin PR, Fisch BM, Orcutt JC, Hetrick BJ, Darkins AW. Framework for a national teleretinal imaging program to screen for diabetic retinopathy in Veterans Health Administration patients. J Rehabil Res Dev. 2006;43(6):741–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Cavallerano AA, Cavallerano JD, Katalinic P, et al. A telemedicine program for diabetic retinopathy in a Veterans Affairs Medical Center--the Joslin Vision Network Eye Health Care Model. Am J Ophthalmol. 2005;139(4):597–604.PubMedCrossRefGoogle Scholar
  51. 51.
    Gardner GG, Keating D, Williamson TH, Elliott AT. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol. 1996;80(11):940–4.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lee SC, Lee ET, Kingsley RM, et al. Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts. Arch Ophthalmol. 2001;119(4):509–15.PubMedCrossRefGoogle Scholar
  53. 53.
    Sinthanayothin C, Boyce JF, Williamson TH, et al. Automated detection of diabetic retinopathy on digital fundus images. Diabet Med J Br Diabet Assoc. 2002;19(2):105–12.CrossRefGoogle Scholar
  54. 54.
    Niemeijer M, van Ginneken B, Staal J, Suttorp-Schulten MS, Abramoff MD. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging. 2005;24(5):584–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Niemeijer M, van Ginneken B, Russell SR, Suttorp-Schulten MS, Abramoff MD. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Invest Ophthalmol Vis Sci. 2007;48(5):2260–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Walter T, Massin P, Erginay A, Ordonez R, Jeulin C, Klein JC. Automatic detection of microaneurysms in color fundus images. Med Image Anal. 2007;11(6):555–66.PubMedCrossRefGoogle Scholar
  57. 57.
    Hansen MB, Abramoff MD, Folk JC, Mathenge W, Bastawrous A, Peto T. Results of automated retinal image analysis for detection of diabetic retinopathy from the Nakuru study, Kenya. PLoS One. 2015;10(10):e0139148.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Abramoff MD, Reinhardt JM, Russell SR, et al. Automated early detection of diabetic retinopathy. Ophthalmology. 2010;117(6):1147–54.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Abramoff MD, Folk JC, Han DP, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013;131(3):351–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Abramoff MD, Niemeijer M, Suttorp-Schulten MS, Viergever MA, Russell SR, van Ginneken B. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care. 2008;31(2):193–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Philip S, Cowie LM, Olson JA. The impact of the Health Technology Board for Scotland’s grading model on referrals to ophthalmology services. Br J Ophthalmol. 2005;89(7):891–6.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Scotland GS, McNamee P, Philip S, et al. Cost-effectiveness of implementing automated grading within the national screening programme for diabetic retinopathy in Scotland. Br J Ophthalmol. 2007;91(11):1518–23.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Scotland GS, McNamee P, Fleming AD, et al. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy. Br J Ophthalmol. 2010;94(6):712–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Costa RA, Skaf M, Melo LA Jr, et al. Retinal assessment using optical coherence tomography. Prog Retin Eye Res. 2006;25(3):325–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Browning DJ, Glassman AR, Aiello LP, et al. Optical coherence tomography measurements and analysis methods in optical coherence tomography studies of diabetic macular edema. Ophthalmology. 2008;115(8):1366–71. 71 e1.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Massin P, Girach A, Erginay A, Gaudric A. Optical coherence tomography: a key to the future management of patients with diabetic macular oedema. Acta Ophthalmol Scand. 2006;84(4):466–74.PubMedCrossRefGoogle Scholar
  67. 67.
    Prescott G, Sharp P, Goatman K, et al. Improving the cost-effectiveness of photographic screening for diabetic macular oedema: a prospective, multi-centre, UK study. Br J Ophthalmol. 2014;98(8):1042–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Miura M, Hong YJ, Yasuno Y, Muramatsu D, Iwasaki T, Goto H. Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography. Am J Ophthalmol. 2015;159(3):528–38 e3.PubMedCrossRefGoogle Scholar
  69. 69.
    Salti HI, Nasrallah M, Haddad S, Khairallah W, Salti IS. Enhancing nonmydriatic color photographs of the retina with monochromatic views and a stereo pair to detect diabetic retinopathy. Ophthalmic Surg Lasers Imaging Off J Int Soc Imaging Eye. 2009;40(4):373–8.CrossRefGoogle Scholar
  70. 70.
    Elsner AE, Petrig BL, Papay JA, Kollbaum EJ, Clark CA, Muller MS. Fixation stability and scotoma mapping for patients with low vision. Optom Vision Sci Off Publ Am Acad Opt. 2013;90(2):164–73.Google Scholar
  71. 71.
    Muller MS, Elsner AE, VanNasdale DA, et al. Low cost retinal imaging for diabetic retinopathy screening. Invest Ophthalmol Vis Sci. 2009;50:3305.Google Scholar
  72. 72.
    Silva PS, Cavallerano JD, Tolls D, et al. Potential efficiency benefits of nonmydriatic ultrawide field retinal imaging in an ocular telehealth diabetic retinopathy program. Diabetes Care. 2014;37(1):50–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Wessel MM, Aaker GD, Parlitsis G, Cho M, D’Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. 2012;32(4):785–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Silva PS, Cavallerano JD, Sun JK, Soliman AZ, Aiello LM, Aiello LP. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity. Ophthalmology. 2013;120(12):2587–95.PubMedCrossRefGoogle Scholar
  75. 75.
    Manjunath V, Papastavrou V, Steel DH, et al. Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening. Eye (Lond). 2015;29(3):416–23.CrossRefGoogle Scholar
  76. 76.
    Navitsky C. The portable eye examination kit. A smartphone-based system brings ophthalmic diagnostic tests to remote settings. 2013. Retina today. Accessed at 4th May 2016. URL:
  77. 77.
    Adam MK, Brady CJ, Flowers AM, et al. Quality and diagnostic utility of mydriatic smartphone photography: the smartphone ophthalmoscopy reliability trial. Ophthalmic Surg Lasers Imaging Retina. 2015;46(6):631–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim JE, Chung M. Adaptive optics for retinal imaging: current status. Retina. 2013;33(8):1483–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Lombardo M, Lombardo G, Schiano Lomoriello D, Ducoli P, Stirpe M, Serrao S. Interocular symmetry of parafoveal photoreceptor cone density distribution. Retina. 2013;33(8):1640–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Nelson DA, Krupsky S, Pollack A, et al. Special report: noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging Off J Int Soc Imaging Eye. 2005;36(1):57–66.Google Scholar
  81. 81.
    Burgansky-Eliash Z, Nelson DA, Bar-Tal OP, Lowenstein A, Grinvald A, Barak A. Reduced retinal blood flow velocity in diabetic retinopathy. Retina. 2010;30(5):765–73.CrossRefGoogle Scholar
  82. 82.
    Field MG, Elner VM, Puro DG, et al. Rapid, noninvasive detection of diabetes-induced retinal metabolic stress. Arch Ophthalmol. 2008;126(7):934–8.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Poore S, Foster A, Zondervan M, Blanchet K. Planning and developing services for diabetic retinopathy in Sub-Saharan Africa. Int J Health Policy Manag. 2015;4(1):19–28.PubMedCrossRefGoogle Scholar
  84. 84.
    Murthy KR, Murthy PR, Kapur A, Owens DR. Mobile diabetes eye care: experience in developing countries. Diabetes Res Clin Pract. 2012;97(3):343–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Sharma M, Chakrabarty AS, Pavan R, Sharma R, Pratibha G. An integrated, mobile service for diabetic retinopathy in rural India. Community Eye Health Int Centre Eye Health. 2011;24(75):17–8.Google Scholar
  86. 86.
    Wang S, Tikellis G, Wong N, Wong TY, Wang JJ. Lack of knowledge of glycosylated hemoglobin in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2008;81(1):e15–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Norris SL, Lau J, Smith SJ, Schmid CH, Engelgau MM. Self-management education for adults with type 2 diabetes: a meta-analysis of the effect on glycemic control. Diabetes Care. 2002;25(7):1159–71.PubMedCrossRefGoogle Scholar
  88. 88.
    Hall V, Thomsen RW, Henriksen O, Lohse N. Diabetes in Sub Saharan Africa 1999–2011: epidemiology and public health implications. A systematic review. BMC Public Health. 2011;11:564.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wang FH, Liang YB, Zhang F, et al. Prevalence of diabetic retinopathy in rural China: the Handan Eye Study. Ophthalmology. 2009;116(3):461–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Xie XW, Xu L, Wang YX, Jonas JB. Prevalence and associated factors of diabetic retinopathy. The Beijing Eye Study 2006. Graefes Arch Clin Exp Ophthalmol Albrecht von Graefes Arch Klin Exp Ophthalmol. 2008;246(11):1519–26.CrossRefGoogle Scholar
  91. 91.
    Raman R, Rani PK, Reddi Rachepalle S, et al. Prevalence of diabetic retinopathy in India: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study report 2. Ophthalmology. 2009;116(2):311–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Raman R, Ganesan S, Pal SS, Kulothungan V, Sharma T. Prevalence and risk factors for diabetic retinopathy in rural India. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III (SN-DREAMS III), report no 2. BMJ Open Diabetes Res Care. 2014;2(1):e000005.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dornhorst A, Merrin PK. Primary, secondary and tertiary prevention of non-insulin-dependent diabetes. Postgrad Med J. 1994;70(826):529–35.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. The Diabetic Retinopathy Study Research Group. Ophthalmology. 1981;88(7):583–600.Google Scholar
  95. 95.
    Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy. Two-year results of a randomized trial. Diabetic Retinopathy Vitrectomy Study report 2. The Diabetic Retinopathy Vitrectomy Study Research Group. Arch Ophthalmol. 1985;103(11):1644–52.Google Scholar
  96. 96.
    Coleman K, Austin BT, Brach C, Wagner EH. Evidence on the Chronic Care Model in the new millennium. Health Aff (Millwood). 2009;28(1):75–85.CrossRefGoogle Scholar
  97. 97.
    O’Connor PM, Harper CA, Brunton CL, Clews SJ, Haymes SA, Keeffe JE. Shared care for chronic eye diseases: perspectives of ophthalmologists, optometrists and patients. Med J Aust. 2012;196(10):646–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel Shu Wei Ting
    • 1
    • 2
    • 3
  • Ecosse Lamoureux
    • 2
    • 3
  • Tien Yin Wong
    • 1
    • 2
    • 3
    Email author
  1. 1.Singapore National Eye CentreSingaporeSingapore
  2. 2.Singapore Eye Research InstituteSingaporeSingapore
  3. 3.Duke-NUS Graduate Medical SchoolSingaporeSingapore

Personalised recommendations