Advertisement

Technology and Innovation for Eye Care

  • Ashutosh RichhariyaEmail author
  • Mukesh Taneja
  • Glenn H. Strauss
  • Matthew Lee Walden
  • Jean R. Hausheer
  • Van Charles Lansingh
  • Rohit C. Khanna
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

A major portion of the world population lives in areas inaccessible to needed medical services, and the absence of proximal medical facilities and providers has contributed to the significant world blindness burden. Healthcare providers are continually addressing this significant challenge of medical service accessibility for all sections of global society.

Recent years have witnessed a surge in technology development and innovation within the medical industry. However, to fulfill the need of affordable, accessible, high-quality medical care, it has become apparent and necessary to have appropriate technology in the effort to provide state-of-the-art care using qualified providers at affordable cost. To enable ongoing high-quality comprehensive eye care as globally accessible, there are three areas of technology, which deserve consideration:
  • Technology to improve access to eye care systems for remote screening and diagnostics. Devices that fall into this group are visual acuity measurement, anterior segment imaging, cataract grading, tear film evaluation, portable fundus, slit lamp cameras, and other multifunctional devices.

  • Technology to improve delivery of remote eye care (real-time delivery of treatment) with the help of new systems such as remote vitreous cutting tools and remotely controlled retinal laser systems to include telemedicine and robotics.

  • Technology to build capacity for high-quality comprehensive eye care. To do this, it is necessary to provide platforms for data sharing, automated decision support systems for high throughput and training, as well as virtual reality-based training in the global field of international ophthalmology.

This chapter discusses these aspects of technology to fill this gap in supply and demand of high-quality affordable ophthalmic clinical services to areas otherwise inaccessible through present-day technology.

Keywords

Innovation Eye care Accessible Affordable Training Remote diagnostic Teleophthalmology Real-time delivery Capacity building 

References

  1. 1.
    Richter GM, Williams SL, Starren J, Flynn JT, Chiang MF. Telemedicine for retinopathy of prematurity diagnosis: evaluation and challenges. Surv Ophthalmol. 2009;54(6):671–85.  https://doi.org/10.1016/j.survophthal.2009.02.020. ISSN 0039-6257. PMC 2760626. PMID 19665742.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Verma M, Raman R, Mohan RE. Application of tele-ophthalmology in remote diagnosis and management of adnexal and orbital diseases. Indian J Ophthalmol. 2009;57(5):381–4.  https://doi.org/10.4103/0301-4738.55078. ISSN 0301-4738. PMC 2804127. PMID 19700877.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pérez MA, Bruce BB, Newman NJ, Biousse V. The use of retinal photography in nonophthalmic settings and its potential for neurology. Neurologist. 2012;18(6):350–5.  https://doi.org/10.1097/NRL.0b013e318272f7d7. ISSN 1074-7931. PMC 3521530. PMID 23114666.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stanzel BV, Meyer CH. Smartphones in der Augenheilkunde. Ophthalmologe. 2012;109(1):8–20.  https://doi.org/10.1007/s00347-011-2425-7. ISSN 0941-293X. PMID 22274293.CrossRefPubMedGoogle Scholar
  5. 5.
    Titmus V4. Accessed on 8 Mar 2017. http://www.amplivox.ltd.uk/titmus-v4/.
  6. 6.
    Bastawrous A, Rono HK, Livingstone IT, et al. Development and validation of a smartphone-based visual acuity test (peek acuity) for clinical practice and community-based fieldwork. JAMA Ophthalmol. 2015;133(8):930–7.  https://doi.org/10.1001/jamaophthalmol.2015.1468.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Forus Health 3Nethra. Accessed on 8 Mar 2017. http://forushealth.com/forus/usa/classic.html.
  8. 8.
    Savini G, Barboni P, Carbonelli M, Hoffer KJ. Agreement between Pentacam and videokeratography in corneal power assessment. J Refract Surg. 2009;25(6):534.PubMedGoogle Scholar
  9. 9.
    Harasymowycz P, Fansi AK, Papamatheakis D. Screening for primary open-angle glaucoma in the developed world: are we there yet. Can J Ophthalmol J Can Ophtalmol. 2005;40(4):477–86.CrossRefGoogle Scholar
  10. 10.
    Ricur G, Zaldivar R, Batiz MG. Cataract and Refractive Surgery Post-operative Care: Teleophthalmology’s Challenge in Argentina. In: Yogesan K, Kumar S, Goldschmidt L, Cuadros J, editors. Teleophthalmology. Berlin, Heidelberg: Springer; 2006.Google Scholar
  11. 11.
    Dry Eye Workshop. The definition and classification of dry eye disease: report of the definition and classification subcommittee of the International Dry Eye Workshop. Ocul Surf. 2007;5:75–92.CrossRefGoogle Scholar
  12. 12.
    Zeev MS-B, Miller DD, Latkany R. Diagnosis of dry eye disease and emerging technologies. Clin Ophthalmol (Auckland, NZ). 2014;8:581–90.  https://doi.org/10.2147/OPTH.S45444.CrossRefGoogle Scholar
  13. 13.
    Bandlitz S, Purslow C, Murphy PJ, Pult H. Comparison of a new portable digital meniscometer and optical coherence tomography in tear meniscus radius measurement. Acta Ophthalmol. 2013;92(2):e112–8.CrossRefGoogle Scholar
  14. 14.
    Holly FJ. Physical chemistry of the normal and disordered tear film. Trans Ophthalmol Soc U K. 1985;104(Pt 4):374–80.PubMedGoogle Scholar
  15. 15.
    Gaffney EA, Tiffany JM, Yokoi N, Bron AJ. A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye. Prog Retin Eye Res. 2010;29:59–78.CrossRefGoogle Scholar
  16. 16.
    Shen M, Wang J, Tao A, Chen Q, Lin S, Qu J, Lu F. Diurnal variation of upper and lower tear menisci. Am J Ophthalmol. 2008;145:801–6.CrossRefGoogle Scholar
  17. 17.
    Bandlitz S, Purslow C, Murphy PJ, Pult H, Bron AJ. A new portable digital meniscometer. Optom Vis Sci. 2014;91(1):e1–8.CrossRefGoogle Scholar
  18. 18.
    Bunya VY, Pistilli M, Ying G-S. Progressively increased variation in tear osmolarity mirrors dry eye severity—reply. JAMA Ophthalmol. 2015;133(12):1482.CrossRefGoogle Scholar
  19. 19.
    Lemp MA, Bron AJ, Baudouin C, del Castillo JM, Geffen D, Tauber J, Foulks GN, Pepose JS, Sullivan BD. Tear osmolarity in the diagnosis and management of dry eye disease. Am J Ophthalmol. 2011;151(5):792–8.CrossRefGoogle Scholar
  20. 20.
    Sullivan BD, Pepose JS, Foulks GN. Progressively increased variation in tear osmolarity mirrors dry eye severity. JAMA Ophthalmol. 2015;133(12):1481–2.CrossRefGoogle Scholar
  21. 21.
    Sambursky R, Davitt WF, Latkany R, Tauber S, Starr C, Friedberg M, Dirks MS, McDonald M. Sensitivity and specificity of a point-of-care matrix metalloproteinase 9 immunoassay for diagnosing inflammation related to dry eye. JAMA Ophthalmol. 2013;131(1):24–8.  https://doi.org/10.1001/jamaophthalmol.2013.561.CrossRefPubMedGoogle Scholar
  22. 22.
    Sambursky R, Davitt WF III, Friedberg M, Tauber S. Prospective, multicenter, clinical evaluation of point-of-care matrix metalloproteinase-9 test for confirming dry eye disease. Cornea. 2014;33(8):812–8.CrossRefGoogle Scholar
  23. 23.
    Mariotti SP. Global data on visual impairments 2010. World Health Organization. Publication WHO/NMH/PBD/12.01. Available at www.who.int/blindness/publications/globaldata/en/.
  24. 24.
    Panwar N, Huang P, Lee J, Keane PA, Chuan TS, Richhariya A, Teoh S, Lim TH, Agrawal R. Fundus photography in the 21st century—a review of recent technological advances and their implications for worldwide healthcare. Telemed J E Health. 2016;22(3):198–208.  https://doi.org/10.1089/tmj.2015.0068PMCID:PMC4790203.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bastawrous A, Cheeseman RC, Kumar A. iPhones for eye surgeons. Eye. 2012;26(3):343–54.  https://doi.org/10.1038/eye.2012.6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gómez-Ulla F, Fernandez MI, Gonzalez F, Rey P, Rodriguez M, Rodriguez-Cid MJ, Casanueva FF, Tome MA, Garcia-Tobio J, Gude F. Digital retinal images and teleophthalmology for detecting and grading diabetic retinopathy. Diabetes Care. 2002;25(8):1384–9.CrossRefGoogle Scholar
  27. 27.
    Tuulonen A, Ohinmaa A, Alanko HI, Hyytinen P, Juutinen A, Toppinen E. The application of teleophthalmology in examining patients with glaucoma: a pilot study. J Glaucoma. 1999;8(6):367–73.CrossRefGoogle Scholar
  28. 28.
    Ng M, Nathoo N, Rudnisky CJ, Tennant MT. Improving access to eye care: teleophthalmology in Alberta, Canada. J Diabetes Sci Technol. 2009;3(2):289–96.CrossRefGoogle Scholar
  29. 29.
    Sim DA, Mitry D, Alexander P, Mapani A, Goverdhan S, Aslam T, Tufail A, Egan CA, Keane PA. The evolution of teleophthalmology programs in the United Kingdom: beyond diabetic retinopathy screening. J Diabetes Sci Technol. 2016;10(2):308–17.CrossRefGoogle Scholar
  30. 30.
    Matimba A, Woodward R, Tambo E, Ramsay M, Gwanzura L, Guramatunhu S. Tele-ophthalmology: opportunities for improving diabetes eye care in resource-and specialist-limited Sub-Saharan African countries. J Telemed Telecare. 2016;22(5):311–6.CrossRefGoogle Scholar
  31. 31.
    Tan IJ, Dobson LP, Bartnik S, Muir J, Turner AW. Real-time teleophthalmology versus face-to-face consultation: a systematic review. J Telemed Telecare. 2016;23(7):629–38. 1357633X16660640.CrossRefGoogle Scholar
  32. 32.
    Kumar S, Wang EH, Pokabla MJ, Noecker RJ. Teleophthalmology assessment of diabetic retinopathy fundus images: smartphone versus standard office computer workstation. Telemed e-Health. 2012;18(2):158–62.CrossRefGoogle Scholar
  33. 33.
    Ye Y, Wang J, Xie Y, Jiang H, Zhong J, He X, Zhang H. Global teleophthalmology with the smartphone for microscopic ocular surgery. Eye Contact Lens. 2016;42(5):275–9.CrossRefGoogle Scholar
  34. 34.
    Li B, Powell AM, Hooper PL, Sheidow TG. Prospective evaluation of teleophthalmology in screening and recurrence monitoring of neovascular age-related macular degeneration: a randomized clinical trial. JAMA Ophthalmol. 2015;133(3):276–82.CrossRefGoogle Scholar
  35. 35.
    Sreelatha OK, Ramesh SV. Teleophthalmology: improving patient outcomes? Clin Ophthalmol (Auckland, NZ). 2016;10:285–95.  https://doi.org/10.2147/OPTH.S80487.CrossRefGoogle Scholar
  36. 36.
    Rhodes LA, Huisingh CE, McGwin G, Mennemeyer ST, Bregantini M, Patel N, … Owsley C. Eye Care Quality and Accessibility Improvement in the Community (EQUALITY): impact of an eye health education program on patient knowledge about glaucoma and attitudes about eye care. Patient Relat Outcome Measures. 2016;7:37–48. doi: https://doi.org/10.2147/PROM.S98686.
  37. 37.
    Chhablani J, Channappayya SS, Richhariya A. Can an automated algorithm identify choriocapillaris in 2D-optical coherence tomography images? Expert Rev Ophthalmol. https://doi.org/10.1586/17469899.2014.922875.CrossRefGoogle Scholar
  38. 38.
    Update on simulation-based surgical training and assessment in ophthalmology. In: Thomsen AS, Subhi YS, Kiilgaard, JF, Cour M, Konge L, editors. Ophthalmology. 2015. 1e20 ª. 2015 by the American Academy of Ophthalmology. Available at: http://www.acgme.org/acgmeweb/tabid/139/ProgramandInstitutional Accreditation/SurgicalSpecialties/Ophthalmology.aspx. Accessed 1 Dec 2014.
  39. 39.
    Gallagher AG, O’Sullivan GC, editors. Fundamentals of surgical simulation principles and practices. London: Springer. isbn:978-0-85729-762-4.Google Scholar
  40. 40.
    Young BK, Greenberg PB. Is virtual reality training for resident cataract surgeons cost effective? Graefes Arch Clin Exp Ophthalmol. 2013;251:2295–6.CrossRefGoogle Scholar
  41. 41.
    Lowry EA, Porco TC, Naseri A. Cost analysis of virtual-reality phacoemulsification simulation in ophthalmology training programs. J Cataract Refract Surg. 2013;39:1616–7.CrossRefGoogle Scholar
  42. 42.
    Singh A, Strauss GH. High fidelity cataract surgery simulation and third world blindness. Surg Innov. 2015;22(2):189–93.CrossRefGoogle Scholar
  43. 43.
    Norman G, Dore K, Grierson L. The minimal relationship between simulation fidelity and transfer of learning. Med Educ. 2012;46:636–47.CrossRefGoogle Scholar
  44. 44.
    Singh A, Strauss GH, Bryan B. Force data measurements during manual small incision cataract surgery (MSICS). ARVO presentation. 2014.Google Scholar
  45. 45.
    Strauss GH. Help Me See technical specification manual. Unpublished manuscript. 2012.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashutosh Richhariya
    • 1
    Email author
  • Mukesh Taneja
    • 2
  • Glenn H. Strauss
    • 3
    • 4
  • Matthew Lee Walden
    • 5
  • Jean R. Hausheer
    • 6
  • Van Charles Lansingh
    • 7
    • 8
  • Rohit C. Khanna
    • 9
  1. 1.Srujana-Engineering GroupL V Prasad Eye InstituteHyderabadIndia
  2. 2.Cornea, Cataract & Refractive Surgery DepartmentL V Prasad Eye InstituteHyderabadIndia
  3. 3.Department of SimulationHelpMeSee, Inc.New YorkUSA
  4. 4.Mercy Ships, Int’lGarden ValleyUSA
  5. 5.Executive DepartmentHelpMeSee, Inc.New YorkUSA
  6. 6.Department of OphthalmologyUniversity of Oklahoma, McGee Eye InstituteLawtonUSA
  7. 7.HelpMeSee, Inc.New YorkUSA
  8. 8.Instituto Mexicano de OftalmologiaSantiago de QueretaroMexico
  9. 9.L V Prasad Eye InstituteHyderabadIndia

Personalised recommendations