Advertisement

Fundamentals of Materials and Their Characterization Methodologies for Energy Systems

  • Colin Tong
Chapter

Abstract

Fundamentals of materials can explain how structure leads to function—from the atomic- and nanoscale to the mesoscale and beyond. Materials structure can be manipulated to construct materials and inspired devices with desired properties and behaviors to meet the requirements of the next generation of energy technologies. Moreover, materials characterization methodology plays an essential role in any materials design and processing developments. This chapter will provide a brief review about the fundamentals of energy materials and their characterization methodologies, mainly focusing on materials structures and property behaviors, advanced characterization methods, computational modeling, and integrated process control and sensing in energy systems. Advanced characterization methods can play an important role in helping us to understand fundamental mechanisms and develop new materials with unique properties. Computational modeling may be may be used to quantitatively predict the chemistry, mechanical, and physical performance properties under various conditions of temperature, pressure, and strain as a function of time. As these tools improve, new materials can be developed faster and with greater control over properties, processing, and, ultimately, material performance in end-use applications. In addition, integrated process control and sensors can be used to achieve maximum efficiency from both materials manufacturing processes and energy systems that demand careful process monitoring and control with sensor technology.

References

  1. Akbar, S., et al.: High-temperature ceramic gas sensors: a review. Int. Appl. Ceram. Technol. 3(4), 302–311 (2006)CrossRefGoogle Scholar
  2. Allen, M.G.: Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 9(4), 545–562 (1998)CrossRefGoogle Scholar
  3. Bastard, G., Brum, J.A., Ferreira, R.: Electronic states in semiconductor heterostructures. In: Ehrenreich, H., Turnbull, D. (eds.) Solid State Physics: Semiconductor Heterostructures and Nanostructures, p. 259. Academic Press, Elsevier, Cambridge (1991)Google Scholar
  4. Brady, M.P.: Overview of alumina-forming austenitic (AFA) stainless steel development. http://web.ornl.gov/sci/physical_sciences_directorate/mst/cst/pdf/Brady/OverviewAFAOct10.pdf (2010). Accessed 17 July 2013
  5. Carotenuto, C.: Advanced mechanical spectroscopy to investigate the microstructure of complex fluids. PhD dissertation, University of PISA, Italy (2007)Google Scholar
  6. Carrasco, E., et al.: Analysis at atomic level of dislocation emission and motion around nanoindentations in gold. Surf. Sci. 572, 467–475 (2004)CrossRefGoogle Scholar
  7. Chang, S.L.: X-Ray Multiple-Wave Diffraction-Theory and Application. Springer, New York (2004)Google Scholar
  8. Chinh, N.Q., et al.: Depth sensing indentation tests in studying plastic instabilities. J. Mater. Res. 19, 31–45 (2004)CrossRefGoogle Scholar
  9. Cummings PT, Glotzer SC Inventing a new America through discovery and innovation in science, engineering, and medicine: a vision for research and development in simulation-based engineering and science in the next decade. http://www.nsf.gov/mps/ResearchDirectionsWorkshop2010/RWD-color-FINAL-usletter_2010-07-16.pdf (2010). Accessed 17 July 2013
  10. Damasceno, P.F., Engel, M., Glotzer, S.C.: Predictive self-assembly of polyhedra into complex structures. Science. 337, 453–457 (2012)CrossRefGoogle Scholar
  11. Diop, M.D.: Characterization of microdevices by nanoindentation. In: Nanoindentation in Materials Science, edited by Jiri Nemecek, IntechOpen (2012). DOI: 10.5772/50997. Available from: https://www.intechopen.com/books/nanoindentation-in-materials-science/characterization-of-microdevices-by-nanoindentation
  12. Docquier, N., Candel, S.: Combustion control and sensors: a review. Prog. Energy Combust. Sci. 28, 107–150 (2002)CrossRefGoogle Scholar
  13. DOE: Computational materials science and chemistry for innovation: accelerating discovery and innovation through simulation-based engineering and science. http://science.energy.gov/~/media/bes/pdf/reports/files/cmsc_rpt.pdf (2010). Accessed 11 July 2013
  14. Ejzak J, Sullivan E Harvesting hydrogen via artificial photosynthesis for the use in hydrogen fuel cells. http://136.142.82.187/eng12/Chair/data/papers/3104.pdf (2013). Accessed 17 July 2013
  15. Faridmehr, I., Osman, M.H., Adnan, A.B., Nejad, A.F., Hodjati, R., Azimi, M.: Correlation between engineering stress-strain and true stress-strain curve. Am. J. Civil Eng. Arch. 2(1), 53–59 (2014)Google Scholar
  16. Ferrero, M., et al.: Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space. Phys. Rev. B. 80, 064501 (2009)CrossRefGoogle Scholar
  17. Gates, T.S., Hinkley, J.A.: Computational materials: modeling and simulation of nanostructured materials and systems. NASA/TM-2003-212163. Langley Research Center, Hampton, VA (2003)Google Scholar
  18. Gazis, A., et al.: Computationally inexpensive methods of ion current signal manipulation for predicting the characteristics of engine in-cylinder pressure. Int. J. Engine Res. 7, 271–282 (2006)CrossRefGoogle Scholar
  19. Glotzer, S.C., Solomon, M.J., Kotov, N.A.: Self-assembly: from nanoscale to microscale colloids. AIChE J. 50(12), 2978–2985 (2004)CrossRefGoogle Scholar
  20. Hashimoto, A., et al.: Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J. Appl. Phys. 106, 086101 (2009)CrossRefGoogle Scholar
  21. Helmenstine AM Printable color periodic table of the elements-2015. https://www.thoughtco.com/printable-periodic-tables-p2-608850 (2015). Accepted 26 May 2017
  22. Holgate, S.A.: Understanding Solid State Physics. CRC Press. 177–178 (2009). ISBN 1420012320Google Scholar
  23. Hosono, E., Fujihara, S., Honma, I., Zhou, H.: Superhydrophobic perpendicular nanopin film by the bottom-up process. J. Am. Chem. Soc. 127(39), 13458–13459 (2005)CrossRefGoogle Scholar
  24. Kimoto, K., et al.: Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature. 450(7170), 702–704 (2007)CrossRefGoogle Scholar
  25. Kremer, K., M뺪ller-Plathe, F.: Multiscale problems in polymer science: Simulation approaches. MRSBulletin 26(3), 205–210 (2001)Google Scholar
  26. Kong, X.Y., Ding, Y., Yang, R., Wang, Z.L.: Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science. 303(5662), 1348–1351 (2004)CrossRefGoogle Scholar
  27. Krishnaswamy, K.: Process control. New Delhi, New Age International (2007)Google Scholar
  28. Lakhtakia, A., Messier, R.: Sculptured Thin Films: Nanoengineered Morphology and Optics. SPIE Press, Bellingham, WA (2005)CrossRefGoogle Scholar
  29. Li, Z., et al.: Development of a micro-miniature nanoindentation instrument. www.imeko.org/publications/tc5-2007/IMEKO-TC5-2007-001.pdf. Accessed 1 Aug 2013 (2007)
  30. Li, J.R., et al.: Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 255(2011), 1791–1823 (2011)CrossRefGoogle Scholar
  31. Loo, C., Lin, A., Hirsch, L., Lee, M., Barton, J., Halas, N., West, J., Drezek, R.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3(1), 33–40 (2004)CrossRefGoogle Scholar
  32. López-Lemus, J., Alejandre, J.: Thermodynamic and transport properties of simple fluids using lattice sums: bulk phases and liquid-vapour interface. Mol. Phys. 100(18), 2983–2992 (2002)Google Scholar
  33. Magnasco, V.: Methods of molecular quantum mechanics: An introduction to electronic molecular structure. John Wiley & Sons, New York (2009)Google Scholar
  34. Mase, G.E.: Theory and Problems of Continuum Mechanics. McGraw-Hill, New York (1970)Google Scholar
  35. Mason, J.K., et al.: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B. 73(5), 054102 (2006)CrossRefGoogle Scholar
  36. Menard, K.P.: Dynamic Mechanical Analysis: A Practical Introduction. CRC Press, Boca Raton (1999)CrossRefGoogle Scholar
  37. Miessler, G.L., Fischer, P.J., Tarr, D.A.: Inorganic Chemistry, 5th edn. London, Pearson (2014)Google Scholar
  38. Miller, M.K.: Atom Probe Tomography: Analysis at the Atomic Level. Kluwer Academic/Plenum Publishers (2000). ISBN 0-306-46415-2Google Scholar
  39. Miller, M.K., Russell, K.F.: Embrittlement of RPV steels: an atom probe tomography perspective. J. Nucl. Mater. 371, 145–160 (2007)CrossRefGoogle Scholar
  40. Mokrani, A., Ewels, C.: Computational materials modeling. http://www.ewels.info/science/posters/Ewels_Mokrani.pdf (2013). Accessed 16 July 2013
  41. Morris, Jr. J.W.: A survey of materials science I. Structure http://www.mse.berkeley.edu/groups/morris/MSE200/I-structure.pdf (2007). Accessed 29 May 2017
  42. NDT: Material/processes—structure of materials. NDT Resource Center. https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Structure/solidstate.htm (2014). Accessed 1 June 2017
  43. Nguyen, T.D., Glotzer, S.C.: Reconfigurable assemblies of shape-changing nanorods. ACS Nano. 4(5), 2585–2594 (2010)CrossRefGoogle Scholar
  44. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)CrossRefGoogle Scholar
  45. OpenStax: Chemistry. OpenStax CNX. http://cnx.org/contents/85abf193-2bd2-4908-8563-90b8a7ac8df6@9.311 (2016). Accessed 7 June 2017
  46. Paddison SJ Computational materials science: multi-scale modeling. http://www.tnepscor.org/sites/www/Uploads/Files/PaddisonTNSCORE_2013.pdf (2013). Accessed 16 July 2013
  47. Panitchayangkoon, G., et al.: Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proc. Natl. Acad. Sci. U. S. A. 108(52), 20908–20912 (2011)CrossRefGoogle Scholar
  48. Pennycook, S.J., et al.: Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems. Phil. Trans. R. Soc. A. 367, 3709–3733 (2009)CrossRefGoogle Scholar
  49. Pharr, G.M.: Probing the mechanical properties of materials at small scales with nanoindentation. http://cdp.ornl.gov/EFRCschool/pdf/talks/Pharr.pdf (2013). Accessed 29 July 2013
  50. Robinson, L.: Materials: Foundation for the Clean Energy Age. http://energy.tms.org/docs/pdfs/Materials_Foundation_for_Clean_Energy_Age_Press_Final.pdf (2012). Accessed 11 July 2013
  51. Rogers, E.: The Energy Savings Potential of Smart Manufacturing. Report IE 1403. ACEEE, Washington, DC (2014)Google Scholar
  52. Rosen, D.W.: Process control and metrics. In: WTEC Panel Report on additive/subtractive manufacturing research and development in Europe. http://www.wtec.org/additive/report/additive-report.pdf (2004). Accessed 12 August 2013
  53. Schuh, C.A.: Nanoindentation studies of materials. Mater. Today. 9(5), 32–40 (2006)CrossRefGoogle Scholar
  54. Shaik, S.S., Hiberty, P.C.: A Chemist's Guide to Valence Bond Theory. Wiley-Interscience, New Jersey (2008). ISBN 978-0-470-03735-5Google Scholar
  55. Simons, J.: An introduction to theoretical chemistry. Cambridge University Press, Cambridge (2003). ISBN 0521823609Google Scholar
  56. Tachi, M., et al.: On the dislocation mechanism of amorphization of Si by indentation. Phil. Mag. Lett. 82(3), 133–139 (2002)CrossRefGoogle Scholar
  57. Tong, C.X.: Advanced Materials for Thermal Management of Electronic Packaging (Springer Series in Advanced Microelectronics). Springer, New York (2011)CrossRefGoogle Scholar
  58. Vaz Jr., M., et al.: Materials modeling-challenges and perspectives. In: Vaz Jr., M., de Souza Neto, E.A., Munoz-Rojas, P.A. (eds.) Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques, pp. 1–21. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2011)Google Scholar
  59. Wang, X.L., et al.: VULCAN—the engineering diffractometer at the SNS. Physica B. 385–386, 673–675 (2006)CrossRefGoogle Scholar
  60. Wee G Miscibility, dynamic mechanical and optical limiting behavior of C60-based and multiwalled carbon nanotube-containing polymeric materials. PhD dissertation. University of Singapore (2004)Google Scholar
  61. Wheeler JM Nanoindentation under dynamic conditions, PhD dissertation. University of Cambridge (2009)Google Scholar
  62. Xia, F., Jiang, L.: Bio-inspired, smart, multiscale interfacial materials. Avd. Mater. 20, 2842–2858 (2008)CrossRefGoogle Scholar
  63. Yang, T.Y.: Finite Element Structural Analysis. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  64. Yoo, C.S., et al.: First-order Isostructural Mott transition in highly compressed MnO. Phys. Rev. Lett. 94(11), 115502 (2005)CrossRefGoogle Scholar
  65. Young, J.A., et al.: Molecular simulations of the imidization of adsorbed polyamic acid. Macromolecules. 33, 4936 (2000)CrossRefGoogle Scholar
  66. Yu, P., Cardona, M.: Fundamentals of Semiconductors Physics and Materials Properties. Springer, New York (2010)CrossRefGoogle Scholar
  67. Zinkle, S.J., et al.: Advances in microstructural characterization. J. Nucl. Mater. 386–388, 8–14 (2009)CrossRefGoogle Scholar
  68. Zook, J.D., et al.: Sensors in control systems. In: Samad, T., Weyrauch, J. (eds.) Automation, Control and Complexity: An Integrated Approach, pp. 131–150. Wiley, New York (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Colin Tong
    • 1
  1. 1.ChicagoUSA

Personalised recommendations